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Abstract

The classical London theory is extended in order to predict the time-dependent

behavior of superconductors. Different to prior models it contains a 2-fold time

derivative of the magnetic field B and includes the self induction of the supercon-

ducting probe. It predicts an inverted (gain)-hysteresis in the M-H diagram for

non-stationary cycles which violates the 2nd law. The gain estimated is measur-

able.

1 Introduction

The 2nd law exists in different versions which can have different consequences
[1]. A generally valid version cannot be found elaborated in the literature
so far. So it is believed generally that the 2nd law has to be formulated as
principle of maximum entropy.
Substantiated doubts about its general validity exist since the discovery of
inverted hysteresis of (relative pure) capacitive and inductive elements. Aha-
roni [2] mentioned first 1994 that these observations are a hint on a 2nd law
violation because inverted electric (or magnetic) (gain-)cycles are proceeded
at only one heat bath temperature. A literature research [3] reviews the best
candidates. For the most candidate systems the claims are insufficient be-
cause a direct energy measurement is missing almost always.
The work of Santhanan et al. [4] describes an overunity effect: Here the
light energy emission of an IR-diode is higher than the input energy of the
small exciting forward current. Obviously the heat energy of the thermal
environment (135oC) adds to the light emission. This may be caused by
phonon-assisted emission [5] [6] . This effect can be found also in the in-
verted hysteresis of a quantum dot FET capacitance [3] [5].
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Figure 1: a) M-H - diagram of a para- or ferromagnetic material in a periodic mag-
netic field. black lines: quasi-stable thermodynamic path, red line: non-stationary
loss cycle The orientation of the cycle indicates a loss .
b) M-H - diagram of a diamagnetic or superconducting material in a periodic
magnetic field. black lines: quasi-stable thermodynamic path, green line: non-
stationary gain cycle The orientation of the cycle indicates a gain .

2 Dynamic London Theory

2.1 Model

2.1.1 motivation

If a para- or ferromagnetic material is subjected to a homogeneous periodical
magnetic field H at constant temperature T it shows a loss of magnetic
energy described by a loss angle. Qualitatively this can be understood by
the principle of causality: The build-up of the magnetization M follows the
induction field H with retardation. The loss of magnetic energy during a
period is represented by the orientation of the cycle in the corresponding
M-H - diagram Fig.1a.
If the same cycle is performed with diamagnetic or superconducting material
with the same loss mechanism, the orientation of cycle is reversed indicating
an ”inverted hysteresis”, see Fig.1b. Then, due to energy conservation it
holds −

∮
MdH + T

∮
ds = 0 with −

∮
MdH > 0 and

∮
ds < 0 (s:=entropy

per volume) which violates the 2nd law.
Therefore a dynamical London theory of superconductivity was worked out
in order to estimate the gain or loss obtained quantitatively.
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2.1.2 the model assumptions

The probe is chosen to have cylindrical geometry and infinite length. The
material of the probe is the type-I superconductor lead. The temperature
is T = 4, 2K. The exciting magnetic field B0(t) is homogenous and in axial
direction. The exciting waveform alternates between rising and falling ex-
ponential pulses with the time constant ∆T . The material consists of two
phases: the superconducting and the resistive phase, see Fig.2. Voltage and
current density jR is generated in the resistive phase and is driven by the
time-changing inductive magnetic field dB/dt. It can be shorted by the sur-
rounding superconductor, cf. fig 2. It holds jR = ∆jS at the contact areas.
The electrons of the resistive current obey a damped equation of motion.
This allows to develop a time-dependent London differential equation. The
homogeneous superconducting part is extended for time-dependency, an in-
homogeneous part adds the contribution of the local resistive electron current
density jR(r) driven by the time-dependent inductive magnetic field.

Figure 2: Two-phase model of a type I superconductor
Voltage is generated in the resistive phase by induction and is shorted by the
superconducting phase. The current densities at the contact areas are jR = ∆jS .
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2.1.3 the superconducting phase

The London equation [7] [8] is

j =
−A

µ0λ2
L

(1)

with A := magnetic vector potential, µ0 := induction constant and λL :=
London penetration depth. Therefrom follows

∇× j =
−B

µ0λ2
L

(2)

The dynamical Ampere-Maxwell equation multiplied by µ0 is

∇× B = µ0(j+
dD

dt
) (3)

with E := electric field and D := ϵ0E dielectric displacement field.
Applying the rot operator follows

∇×∇×B = µ0(∇× j+ ϵϵ0
d

dt
(∇× E)) (4)

with ϵ0 := dielectric vacuum constant and ϵ := dielectric material constant.
After inserting the Faraday-Maxwell law ∇×E = −dB/dt one obtains with
eq.(2) after some calculations

∇2B =
B

λ2
L

+ µ0ϵ0ϵ
d2B

dt2
(5)

This is the dynamical differential equation of the superconducting phase.
If the last term is omitted it is identical to the stationary London differential
equation.

2.1.4 the resistive phase

Generally in a superconducting material it holds for moving charge particles
[8] (with m :=mass, v :=velocity, q := charge, p := impulse)

p = mv + qA (6)

For a stationary superconductor it holds for the impulse p = 0 .
To extend eq.(6) and change mv to a macroscopic current density j, the
contributions of the many single resistive and superconducting charges have
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to be summed up. With nR/S := number of resistive/superconducting charges
per volume the result can be written

j = nRqRvR − nSq
2
S

mS

A (7)

The terms on the right side can be defined as jR := nRqRvR and jS :=
−A/(µ0λ

2
L) with λ2

L := mS/(µ0nSq
2
S) . Applying the rot-operator to eq.(7)

above and multiplicating with µ0 yields with eq.(1)

µ0∇× j = µ0nRqR∇× vR − B

λ2
L

(8)

If eq.(8) is inserted into eq.(4) we can obtain finally the full inhomogeneous
London differential equation, cf. eq. (19).
Here, in order to determine the system completely we solve the equation of
motion for the velocity v(r) of the resistive electrons in the superconductor
at each radius r of the cylinder or ring

m.
dv

dt
+ γ.v = Find + Fself (9)

γ = nRq
2/σ is the friction constant with σ := conductivity.

γ is derived from the equations Fel = γv, Fel = qE, j = σE and j = nRqv .
j and E is eliminated and the coefficients of the force equations are compared.
Find := q.Eind is the force induced by the time-dependent field B(t) .
It is derived from Faraday’s law (with r := radius)∮

Eindds = −
∫

2πrḂ(r)dr (10)

The solution is

Find(r) = −q

r

r∫
0

Ḃ(r)rdr (11)

Fself := q.Eself is the force due to selfinduction. It is derived from the
Faraday-Maxwell law ∮

Eselfds = −
r∫

0

2πrḂself (r)dr (12)

Ḃself is obtained from Ampere’s law ∇ × Bself = µ0.j which has to be
differentiated for time∮

Ḃselfds = 2π

r∫
x0

µ0qnRv̇(r)rdr (13)
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Evaluating eq.(13) for Ḃself , inserting it in eq.(12) and evaluating eq.(12) for
Eself the final result Fself := q.Eself can be written

Fself (r) = −q2µ0nR

r

d

dt

r∫
0

(

r′∫
x0

v(r)rdr)dr′ (14)

So inserting eq.(11) and eq.(14) in eq,(9) we obtain the time-dependent dif-
ferential equation with the definition vm := v(r).r

m.v̇m(r) + γvm(r) = −q

r∫
0

Ḃ(r′)r′dr′ − q2µ0nR

r∫
0

(

r′∫
x0

v̇m(r)dr) dr
′ (15)

We define as Φ := the net magnetic flux/(2 π)

Φ(r) :=

r∫
0

B(r′)r′ + qµ0nR(

r′∫
x0

vm(r)dr ) dr′ (16)

and for the following

ϕ(r′) :=

r′∫
x0

vm(r)dr (17)

The solution of the differential equation eq.(15) is (with τ := m/γ)

vm(r) := − q

m
exp(−t/τ)

tend∫
0

exp(t/τ)Φ̇(r) dt (18)

2.1.5 the complete differential equation system

The inhomogeneous London differential equation can be derived as mentioned
in the last section, cf. eq.(8).
The superconducting part, cf. eq.(5), has also to be expressed in cylindrical
coordinates. With the relation |∇ × v| = 2ω = 2v/r , see [10] , the equation
is

d2B

dr2
=

B

λ2
L

− 1

r

dB

dr
+ µ0ϵ0ϵ

d2B

dt2
− 2µ0nRqRv(r)/r (19)

Two equations complete the differential equation system, they are (cf. eq.(16))

d

dr
Φ(r) = rB(r) + qµ0nRϕ(r) (20)
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and cf. eq.(17)
d

dr
ϕ(r) = vm(r) (21)

Sometimes it is recommended to enlarge this system for control or to avoid
numerical problems by the code. The additional equation is the difference of
the time-dependent minus the stationary London differential equation.
Defining δB := B −Bs with Bs := stationary solution, this equation is

d2δB

dr2
=

δB

λ2
L

− 1

r

dδB

dr
+ µ0ϵ0ϵ

d2B

dt2
− 2µ0nRqv(r)/r (22)

If the algorithm is programmed without selfinduction only eq.(19) and eq.(20)
(with ϕ = 0) are needed. The stationary solution needs only eq.(19) and skips
all time dependent terms.

3 Results

Fig.3a show the profiles of the magnetic field B(r) and (B − BS)(r) of a
cylinder shortly after an exponential magnetic field B0(t) is switched on (see
figures and appendix for details). Fig.3b shows the same for a ring. Because
the deviations ∆M(r) := (B − BS)(r) from equilibrium state are small we
investigated what happens if the system is subjected permanently to an al-
ternating field B0(t). Then the energies are summed up which are exchanged
between heat and the magnetic field .
This is shown in Fig.4a and Fig.4b.
The ∆M̄ −H - diagram is generated as follows:
At every moment t the radial profile of the probe is calculated. This allows
to determine the deviation B(r) − BS(r) from equilibrium. Therefrom the
non-equilibrium change of permeabilty ∆µ(r) is calculated according to

B −BS

B0

=
µ0(1 + µ)H − µ0(1 + µS)H

µ0H
:= ∆µ(r) (23)

This allows to calculate the local non-equilibrium magnetization change
∆M(r) := ∆µ(r)H at r and ti with H := B0(t)/µ0. Therefrom it follows the
mean non-equilibrium magnetization change of the probe.

∆M̄ =
2

r20 − x2
0

∫ r0

x0

∆M(r)rdr (24)
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Figure 3:
a) upper diagram: B-r - profile of the cylinder after starting a exponential pulse
lower diagram: (B −BS)− r - profile
data: ∆T = 10−7s, resolution 80p/∆T , 6 equations, (p:=points)
b) upper diagram: B-r - profile of the ring after starting a exponential pulse
lower diagram: (B −BS)− r - profile
parameter: ∆T = 10−7s, resolution 10p/∆T , 4 equations

Figure 4:
a) cycling a cylinder: upper diagram: exciting field B0 vs. time t
lower diagram: non-stationary gain cycle: dM̄ −H - diagram
parameter: ∆T = 10−7s, resolution 80p/∆T , 6 eqns., cooling time for 1 °K: ≈
7808s
b) cycling a ring: upper diagram: exciting field B0 vs. time t
lower diagram: non-stationary gain cycle: dM̄ −H - diagram
parameter: ∆T = 10−7s, resolution 10p/∆T , 4 eqns., cooling time for 1 °K: ≈ 2.2s
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This allows to calculate the magnetic field energy change after a closed
cycle

∆E =

∮
∆M̄dH (25)

The simulation shows that both cycles with the cylinder or the ring yield
a gain. The gain of the ring is larger. The result for the cylinder is pre-
liminary and needs further evaluation. If the a cycle is calculated without
self-induction, this cycle yields a loss (Fig.5).
Because the field energy is exchanged with heat, a corresponding temper-
ature change per time can be estimated from the specific heat data. The
specific heat is a modified T 3-law [12], (material data cf. Tab.1 of appendix)

CP = c1(T/TD)
3 + c2T (26)

We change this into a heat capacity per volume: (data cf.Tab.1 of appendix)

CP V ol := 4, 186.103 CP/(MPb dPb) (27)

From any cycle we obtain the field energy change ∆E/∆t per volume (in
dm3) and time (in sec)

∆E/∆t ≈ n∆E (28)

n is the number of cycles per sec.
Therefrom we obtain the time estimation for cooling the material in the field

t ≈ CP V ol

∆E/∆t
. (29)

For numerical results, see Fig.4–6. Numerical data for boundary conditions
and geometry can be found in the appendix.
The effects depend also strongly on ∆T (or frequency), see Fig.6a and 6b.
We summarize: The estimations show that the cooling effects are measurable.

4 Discussion

Equilibrium thermodynamics can be regarded to be a stable attractor in
the framework of nonlinear dynamics [18]. For a dynamical system f(w,q; t)
relaxing to the stationary state of inner energy U , the dependent variables can
be interpreted as w := (p, T,B) and the control parameters as q := (V, S,H).
The mathematical dynamical solution can contradict the 2nd law, if it is an
inconsistent additional assumption in the context of the model.
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Figure 5:
profile and loss cycle of a ring calculated without self-inductance
a) upper diagram: B-r - profile of the ring shortly after starting up a pulse
lower diagram: (B −BS)− r - profile
parameter: ∆T = 10−7s, resolution 10p/∆T , 3 equations
b) upper diagram: exciting field B0 vs. time t
lower diagram: non-stationary loss cycle: dM̄ −H - diagram of the ring
parameter: ∆T = 10−7s, resolution 10p/∆T , 3 eqns., heating time for 1°K: ≈ 0.4s

Figure 6:
non-stationary gain cycles of a ring: dM̄ −H - cycles with different frequencies:
a) parameter:∆T = 10−6s,resolution 10p/∆T ,4 eqns., cooling time for 1°K: ≈ 59.4s
b) parameter:∆T = 10−8s,resolution 10p/∆T ,4 eqns., cooling time for 1°K: ≈ 0.19s
diagram B0 vs. time t as in Fig.5b) but time baseline for a) x10, for b) :10
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Effective ”cooling down” a superconductor by microwaves is a known ef-
fect [9], but is attributed to a lowering of TC and the gap energy. Here it is
explained as real temperature decrease. The effect seems to be generated by
self induction.
We compare the theory with prior work:
The term d2B/dt2, the consideration of flux and the self induction is not
present in all prior versions [15] - [17]. They are more simple and better
suited for the application of analytic solution methods.
Furthermore, our result of τ differs to ref. [17]:
We find τ = (mσ)/(nRq

2) = 4, 7694.10−8 sec.
From [17] it follows τ = 4πσλ2

L/c
2 = (mSσ)/(nSq

2
S) = 0, 53375.10−10 sec

(Here λ2
L = mSc

2/(4πnSqS) is in cgs-units, cf. [8].)
The cause of this difference is the separate handling of resistive and super-
conductive charges in this article.

5 Outlook

If the theory can be evaluated by experiments it will be transferred to high-
Tc-superconductors. This will show its technological relevance.

6 Appendix: - the implementation of the code

The material data of lead necessary for the program are shown in Tab.1.
The differential equation system has to be rewritten as a system of first order.
We redefine y1 := B(r), y2 := y′1 := dB/dr, y′3 := dΦ/dr , y′4 := dϕ/dr,
y5 := B −BS and y6 := d(B −BS)/dr and obtain (cf. eq.[19] - [22])

y′1
y′2
y′3
y′4
y′5
y′6

 =


y2
y1/λ

2
L − y2/r + d2B/dt2− 2µ0qnRvm/r

2

ry1 + µ0qnRy4
vm
y6
y5/λ

2
L − y6/r + d2B/dt2− 2µ0qnRvm/r

2

 (30)

This is the most complex version to tackle the problem. The differential
equations can be solved by the MATLAB routines bvp4c or bvp5c. In
the beginning the solving functions are given as estimating functions on the
interval. At the chosen x-coordinates the points are calculated and intercon-
nected by spline functions in the program. A Least-Square routine minimizes
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Table 1: material data of Pb

value units ref.

TC critical temperature 7,193 K [8]
λ0 penetration depth (T = 0) 3, 7.10−8 m [8]

λL penetration depth at T λL = λ0/
√

1− (T/TC)4 m [9]
nS supercond. electron density mS/(λ

2
Lµ0q

2
S) m−3 [8]

NF density of electrons < ϵF 13, 2.1028 m−3 [8]
TF Fermi temperature 10, 87.104 K [8]
v valence bond number 4 - [8]
nR resistive electron density vNFT/TF m−3 [8]
ρ273 specific resistivity at 273 K 19, 2.10−6 Ω.cm [11]
ρ specific resistivity at 4.2 K 1, 9.10−4ρ273/100 Ω.m [11]
σ specific conductivity 1/ρ (Ω.m)−1 -

TD Debye temperature 96,3 K [12]
c1 fit coefficient of spec. heat 464,4 cal.mol−1.K−1 [12]
c2 fit coefficient of spec. heat 7, 64.10−4 cal.mol−1.K−2 [12]
MPb molecular mass 207,2 g.mol−1 [13]
dPb mass density 11,35 g.cm−3 [14]
CP spec.heat per mol c1(T/TD)

3 + c2T cal.mol−1.K−1 [12]
CP V ol spec. heat per volume 4, 186.103.CP .M

−1
Pb .d

−1
Pb J(dm−3K−1) -

the summed squared deviations from the differential equation F (yi, ẏi) = 0.
The iteration yields the radial profile B(r) of the probe.
The time-dependent algorithm calculates the homogeneous outer magnetic
field B0(t) at every time ti. This determines the boundary conditions which
allow to solve the differential equations of the radial profile at ti.
Derivatives in the code like dΦ/dt(r, ti) are programmed by a difference quo-
tient remembering data solved at the last point at ti−1. Similarly d2B/dt2 is
calculated as a 2-fold difference quotient.

Numeric inputs:
The exponential time constant of the exciting B0(t) is ∆T ,
the time length of the rising or falling slope is 2∆T , in the end 4∆T .
The boundary conditions of a cylinder on an interval [x0, r0] are:
y-coordinates: left border:
y2 = 0; y3 = 0; y4 = 0; y5 = 0;
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y-coordinates: right border:
y1 = B0(ti); y6 = 0;
r-coordinate: left border x0 = 0, 00001; right border r0 = 0, 001.
Remark:
x0 = 0 can not be applied due to numerical problems of the solving routine.
So, by tolerating a small error, the point x0 is chosen near to zero .

The boundary conditions of a ring on an interval [x0, r0] are:
y-coordinates: left border:
y1 = B0(ti); y3 = x2

0B0(ti); y4 = 0; y5 = 0;
y-coordinates: right border:
y1 = B0(ti); y5 = 0;
r-coordinate: left border x0 = 0, 0005; right border r0 = 0, 001.
Explanation for y3 at the left border:
the magnetic field on the left of x0 is B = B0(ti) + Bi: The additional field
Bi is generated by the superconducting ring currents jS = µ−1

0 rotB close
to the right side of x0. These ring currents have the opposite direction to
the ring currents close to the left of r0. The ring currents at r0 generate
the magnetization M ≈ −B0 in the superconductor. At x0 this influence is
canceled, i.e. M(x0) = −B0 −Bi = 0.
It is possible to regard this setup as two concentric coils: The outer coil at
r0 generates magnetization, the inner at x0 compensates it. Therefore the
field in the inner hollow core is B = B0 + Bi ≈ 2B0. Then, the net flux
y(x0) ≈ 2.B0.x

2
0/2 is the boundary value.
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