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Abstract: A simple  mechanical setup proposed and built by F. Wuerth is calculated acc. to theoretical
mechanics. The calculation predicts no overunity behaviour for any cycle path because the mathematical
description of the system fullfills Hamiltonian energy conservation. 
The experiments regarding the claims of  Wuerth are discussed. If the these experiments are performed as fall
experiments no overunity can be found and the theory coincides with the experiment exactly.
If these experiments are performed horizontally two independent references exist which claim that during the
braking process no back torque can be measured.

1. Introduction

In a recent article [1] the author discussed parametric driven "perpetuum mobiles" which are
in fact analogs to wind wheels in a wind field. The result was that for simple problems like a
soft iron bowl in a permanent magnet field (Watson´s SMOT) such effects are not possible
due to the existing conservative force field. However, if the coupling constant varies with
time overunity is possible in principle. At first sight the Wuerth parametric rotator presented
here seems to be such a system as well, however it will be shown in this article, that this is
not possible from the theory.

2. Experimental setup

Wuerth’s experiments originate from Stein’s rotor setup [2] which has been published to a
bigger audience by the journalist G. Hielscher [3]. The description here is taken from [4] and
[5], comp fig.1 a)-c). Further material can be found published at [6] -[9] .
Two cylindric rotors are mounted on both ends of a long slab . They can rotate freely around
their perpendicular axis of symmetry in the horizontal plane. The slab itself  rotates as well
horizontally around a perpendicular axis which is exactly in the middle of the slab.    
If the slab is set into rotation with the angular velocity in fig.1a, the position of the rotation

�
�

angle of the rotors  remains the same relatively to the outstanding observer. Relatively to
��

the observer in the rotating system of the slab the position angle rotates backwards with the
angular velocity  = - . Due to friction the relative velocity  backwards in the slab system

��
�

� ��

looses its speed with time until the rotor moves in phase with the slab exactly like an rigid
body. The Wuerth system proceeds a cycle consisting of three essential steps, comp. fig.1b).

ACCELERATION
1) During the acceleration the movement of the slab is coupled to the rotors by a (geared)
belt. The ratio of the proceeded angles is chosen by the translation of the gears to be
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EQUALIZATION
2) If the angular velocity is achieved,  the relative velocity  between slab and the

��
1

��

rotating cylinder is brought to zero. 
Two technical option exist to do that: 
* driving the rotors separately by belts from outside, comp. fig.1c. 
* decoupling the constraint between  and  and using brakes. 

�� ��

DECELERATION
3) Then, the whole rigid system is decelerated.
It is claimed by O. Stein (2) and later by F. Wuerth, (3) that these cycles yield a net work
gain.

3. Theoretical calculation

3.1 Cycles with driven rotors
The experimental setup are represented in fig. 1b) + 1c). The cycle is calculated as follows:

3.1.1 Acceleration
During the acceleration the system is subjected to the constraint

where  is the angular velocity in the slab system and  is the angular velocity of the slab,
�� ��

comp. fig.2 . Acc. to the derivation in the appendix and using equation 2 the kinetic energy
during the acceleration is

with  being the inertia moment due do the centre of mass point rotation plus
�

1 � mr 2
0

� �
slab

inertia of the slab .  is the inertia moment of the rotor.
�

2
For more easy writing we use all energies, torques and angular  momentas are divided by

,  meaning we change (3) to
�

1

where we used the definition .k: �
�

2 /
�

1
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If we use the definition  for the potential energy (divided by ) of a motor or aV acc( � )  1
spring, the total energy  is conserved during acceleration acc. to Hamiltonian mechanics. E acc

tot

The Lagrange energy  is
�

The angular moment L is

Because  or  during acceleration E acc
tot � constant

	
E acc

tot � 0

holds as well  where  is the final angular velocity of acceleration . ��
1

3.1.2 Equalization driving the rotors
To be sure  we will apply two calculation procedures in order to calculate the cycle. These
are the Lagrange equations of first and second kind, comp. [10] p.87-88 and  p.38 ff. . 
The Noether theorem, comp. [10]  Kap.5, will be applied as well to check the results
independently.

Derivation using the Lagrange equation of second kind 

The receipt of the Lagrange formalism of 2nd kind is as follows:
* write down the Lagrange energy in terms of all independent generalized coordinates
* insert the constraints
* calculate the Euler-Lagrange equations, i.e. the equations of motion
* solve the equations of motion

The Lagrange energy of the whole setup is

Here is  the angle position of the rotor.  and  are the "motor potentials" acting on rotor
 V � V �
and slab. Because the coordinate  above is not useful for the comparison with the

experimental reality we apply a transformation for the coordinate  
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Equation (10) inserted in eq.(9) yields the Lagrange energy in the generalized coordinates �
and  �

The torques (divided by  )on the axes and  can be found from of
�

1 T 	 � � � V/ � � T 
 � � � V/ � �
the Euler-Lagrange equations derived from (11)

If the -axis has no motor drive, i.e.  or , the second equation describes a� V 
 � constant T 
 � 0
conservation law of angular momentum which can be confirmed as well by application of the
Noether theorem, comp. [10]  Kap.5. If the equilization takes place without motor we have 

Integration of both sides yields for a equalization process

Therefrom follows

This formula describes the change of the rotation velocity of the slab during equilization if
the motor of the axis is decoupled.

Derivation using the Lagrange equation of first kind

The receipt of calculation is as follows:

* write down all present constraints
* write down the Lagrange energy dependent from the maximum independent 6N generalized
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coordinates (due to rotation and translation) of the N bodies of the system
* calculate the Euler-Lagrange equation including the Lagrange multiplier or constraint
forces
* eliminate the Lagrange multiplier from the obtained equations.
* insert the contraints and solve the system of equations

This procedure has the advantage that all constraint forces can be seen in the calculation.
The general formulation of the equation of motion is 

where  are Lagrange  multiplier to be eliminated in the calculation, if necessary. The  
�

j aij
are the coefficients of the k constraints 

here written in differential form.
The Lagrange energy in generalized coordinates is

Additionally we have the rheonomic constraints representing the motors

which describe how rotor and slab are accelerated. It is not necessary to specify them more
here because they drop out as we will see in the course of the calculation. 
The Lagrange equations of 1st kind are in this case

where  are the constraint forces of the motors.  Z � / 
Both equation are already known from equation (12), because we can identify  = .T � /  Z � / 
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Acc. to the last two sections the energy to achieve the equilization can be calculated.
If the rotor is equilizated at  =constant then the exchanged energies are:

��
1

In sum we have

3.1.3  Deceleration 
During the deceleration the system is rigid. The kinetic energy during the deceleration can be
calculated acc. to the Steiner formula as

The angular moment is

If we use the definition  for the potential energy stored up by a generator or a spring,V dec( � )
the total energy  isE dec

tot

is conserved during deceleration acc. to Hamiltonian mechanics. 
Because  or  during acceleration holds as wellE dec

tot � constant
�

E dec
tot � 0
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3.1.4  The energy balance of closed cycles with driven rotors

Cycle 1: during the equilization phase the angular velocity of the slab is held constant.

The performance of the cycle is described in the tabel below:

rotor       slab
  acceleration: �� �

0 , �� �
0 � �� � ��

1
equalization: �� �

0 � �� � ��
1 , �� � ��

1
deceleration: �� � ��

1 � �� �
0 , �� � ��

1 � �� �
0

energy balance:

acceleration: eq.(4)
�

E
1

� 1
2

1 � k(1 � � )2 �� 2
1

equalization: eq.(22)
�

E2

� � � (1 � 0.5 � )k �� 2
1

deceleration: eq.(23)
�

E
3

� � 1
2

(1 � k) �� 2
1

________________________________________

sum:
�

E1 � �
E2 � �

E3

�
0

Cycle 2: during the equilization the slab is decoupled from the motor.

The performance of the cycle is described in the tabel below:

rotor       slab
  acceleration: �� �

0 , �� �
0 � �� � ��

1
equalization: �� �

0 � �� � ��
2 , �� � ��

1 � �� � ��
2

deceleration: �� � ��
2 � �� �

0 , �� � ��
2 � �� �

0

energy balance:

acceleration: eq.(4)
�

E
1

� 1
2

1 � k(1 � � )2 �� 2
1

equalization: eq.(21)
�

E
2

� 1
2

k �� 2
2

deceleration: eq.(23)
�

E
3

� � 1
2

(1 � k) �� 2
2

________________________________________

sum:
�

E1 � �
E2 � �

E3

�
0

The balance can be proved  using the relation between  and  eq. (15).��
1 ��

2

3.2. Cycles with braked rotors 
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 �

 �
q i

�

 �



q i

�


P


 �
q i

� 0 (30)

Cycle 1: braking with motor decoupled from  - driving  motor�

3.2.A1 Acceleration
The energy to apply in the acceleration phase is the same as calculated in section 3.1.1, i.e.

3.2.A2  Braking the rotor with motor decoupled from  - driving motor�

During the braking the rotors move freely because the whole setup is totally decoupled from
any driving axis and exchanges no energy with the motors. We have the task to calculate
the angular velocity of the slab  after braking.

��
2

We use the Lagrange formalism of 2nd kind including friction, comp.[10] p.38 ff..
The receipt of this procedure is as follows:

* write down the Lagrange energy in terms of all independent coordinates
* insert the constraints
* calculate the Euler-Lagrange equations, i.e. the equations of motion
* solve the equations of motion

The Lagrange energy  is
�

with  as rotational and  as translational coordinate. We chose as independent� : �
� � � �

coordinates  and  . The dissipation function is� �

where we defined k*  as the friction constant divided by  .  The general formulation of the
�

1
equation of motion is

where the generalized coordinates qi are  and  in our case. The force terms  are� � 

L/



qi

zero, because no forces act on the system from outside. Therefrom, the equations of motion
can be derived to
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1exp( � t/ � ) (34)

��
2 � ��

1 � � ��
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E dec

kin � 1
2

1
�

k �
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If we subtract both equations (31) we get

This equation is reinserted into the second equation (31) . Therefrom, we get the equation of
motion for

�

Therefrom, with the initial condition and using the definition 
�
(t � 0) � � ��

1 � : � 1/[ k � (1 �
1/k)]

the solution follows as

If we integrate (32) from t=0 to  using (34) we get�

This result can be obtained as well using the assumption that the total angular momentum
 (derived in the appendix) is conserved during the braking process, i.e.Ltot � �� �

k( �� � ��
)

This equation is equivalent to equation (35).

3.2.A3 Deceleration
The energy obtained in the deceleration phase is principally the same as calculated in section
3.1.3

3.2.A4 Energy  balance
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q i
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� �
k

i � 1


jaij � Zqi

(40)


 � 1
2

�� 2 � 1
2

k
�� 2

(41)

With the information of this section 3.2.A we can establish the total energy balance of this
cycle. Using (27),(36) and (37) we obtain

Because  is always positive the end result is a energy loss .   
�
dEkin

Cycle B: braking with motor coupled to  - driving  motor ( )� ��
1 � ��

2 � constant

3.2.B1 Acceleration
The energy to apply in the acceleration phase is the same as calculated in section 3.1.1, i.e.

The acceleration work is represented by the lower line of the red area in the work diagram of
kinetic energy, see fig. 3b .

3.2.B2 Braking the rotor
We use here the Lagrange formalism of 1nd kind including friction, comp.[10] p.87/88 ff. .
The general formulation of the equation of motion is here

The Lagrange energy  is



with  as rotational and  as translational coordinate. The dissipation function is� : � � � � �
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P � 1
2

k
�
(

�� � �� )2
(42)

� .. � k
�
(

�� � �� ) � Z�
k

�
(
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k
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�
 � � ��
1exp( � t/� ) (45)

E brake
kin � �  �

0

k
� �
 .

��
1dt �  �

0

k 
.. ��
1dt � � k� �� 2

1
(46)

�
E dec

kin � 1
2

1 � k
�� 2

1 (47)

Therefrom the equations of motion are derived to

Inserting the only constraint  with =constant and using the definition � � ��
1t � 0

��
1

� : � � � 

we get 

The solution of the second equation is

with  . The energy to brake down the relative movement of the rotor to the slab is� : � k/k
�

(using (44))

where we used the definition  which is the angular velocity of the  rotor
�


0 : � �
 (t � 0) � � ��
1

during the braking. 

3.2.B3 Deceleration
The energy obtained in the deceleration phase is again the same as calculated in section 3.1.3

3.2.B4 Energy balance
With the information from the last section we can establish the energy balance of a cycle:
It holds
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�
dEkin: 	 � 1

2
k � 2

�� 2
1

(48)

This means: we have a loss after a cycle.

-
4. Experiments
The author had the opportunity to see the setup used by Felix Wuerth, see fig.3. The setup
presented by F. Wuerth contained only the blue and black swastika disk as rotors shown in
fig.3.
The energy measurement are made using a torque meter. The angular velocity is measured by
a tachometer coupled to the central axis. Power at the axis is calculated immediately from the
interface card of the torque meter. Measured and calculated values are saved in arrays on a
computer.
The torque meter couples to the central axis over a nut on which the key connector of
instrument is set up. Acceleration and deceleration is made by hand using a crank lever. The
rotation velocity is typically about 1 to 2 per second. Braking the rotors against the slab is
done by strong Neodym-magnets which are fastened to the slab over a hinge. The hinges are
turned down to the disks, attach  and brake the rotor motion in about an second .
Fig.4a shows a run of a complete rigid setup with permanently braked rotors. It can be seen
that after a run acceleration-deceleration a loss can be measured as expected from
conventionally thinking.
Fig.4b shows a run:  acceleration with freely moving rotors - braking the rotors by the
magnets - deceleration with rotors braked. 
The diagram shows a gain of about 10%. It should be mentioned that no deceleration of the
slab could be observed by eye or by instrument during the braking phase contrary to the
predictions of the theory.
Even if the first look on the plots fig.4a and fig.4b let arise some questions regarding the
quality of the measurement, the data can be used perhaps as an first estimation because they
are confirmed by independent observations [11].
The braking process of the four arms swastika-like rotor disks is done "automatically" with
time during the movement. Probably this effect is less due to friction but due to the fact that
the centre of mass of the disks is not the centre of the weight in the centrifugal force field for
these rotating system. The swastika disk has four "centres of weight" which tend to go
outwards as much possible and fix the position of the wheel in this way. 

The author himself build up a falling disk experiment proposed in [11]. In principle this setup
is Wuerth’s setup with only one rotor disk using the gravitational field as motor and brake,
comp. the exact documentation [12] and fig5a). 
It could be confirmed that the movement of the rigid and the free moving disk is in full
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agreement with the theory, comp fig 5b)+c). 
If the falling free moving disk is braked down at the lowest point by a bolt locking the
movement relatively to the slab, the movement slows down instantly and the the pendulum
reaches only about half of the height, where it was started. Therefore, the experiment yields a
loss, as expected by the theory presented in this article, but contrary to the hopes in [11]. 

Similarly, in order to test out special situations of movement of a mass, the author build up a
"gliding perl" experiment comp. [13] and fig.6a: Here, a cylindric mass body with a hole
along its axis slide could slide on a round stick filling the hole. The stick itself was fastened
perpendicularly to an axis. This axis could be rotated as well.
In the experiment the stick with the body on it were set to a initial position which pointed
almost perfectly against gravity. Then the stick was unlocked and the weight fell down to
earth guided by the stick rotating around the axis. 
This experiment as well was in agreement with the theory as shown in fig 6b) and c).
This means: both experiments performed by the author fulfilled the Hamiltonian energy
conservation.

In order to see whether deviations to  mechanics may appear in the horizontal plane  the
author built up a experiment proposed by Imris [18]. Imris states that an mass rotating around
a centre  wins energy if his path goes from a high to a narrow radius of rotation.
The own check of this claim [19] showed energy conservation acc. classical  mechanics
experimentally and theoretically and disproved Imris claims 

5. Discussion
For the braked case the theory is in contradiction to the theory if we take all experiments for
true. Acc. to the experiments [11] of Würth and Bucher  it seems to be possible that rotors
masses moving perpendicular to the gravity field violate the conservation of energy ,
However, acc. to the experiments of the author angular conservation and the theory is in
accordance with experiments if the rotors move along the lines of the conservative gravity
field and exchange energy with it.
This strange situation is augmented by experiments of Wuerth who claimed to have observed
different moment of inertia for different sense of rotation at bodies which are far away from
any symmetry and equilibration [9]. 
Therefore, the author played around with the idea that the third Newton’s law is  wrong and
looked for correction terms which 

1) are in accordance with Newton’s first principle and do not selfaccelerate the system
2) allow to reproduce the macroscopic laws of planetary motion 
3) allow to reproduce the abnormal effect during braking perpendicular to the field on the
rotors
4) are compatible with all experiments reported above

Such correction term would apply only in certain forms of circular movement. For example,
we can think on "magnetic-like" correction terms for  F= m.a similar like  .

�
F ~ �

� x ( �r x �g)
These correction terms modify the centrifugal law.
In effect, the question, whether mechanics is good enough to describe all forms of
mechanical movement should be clarified in the future. Therefore, it is planned to reproduce
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the Wuerth’s original experiment in the horizontal plane at the level reported here with an
exact comparison between theory and experiment.
Nevermind, it can be interesting to collect messages of strange observations: Svein Utne
reported the following experiment: If gyroscopes are accelerated to high rpm , then braked
down, and reaccelerated, then the energy to speed them up again is significantly less [14,15].
The whole  mechanical cycle is in some sense analogous to thermodynamic cycles, where the
constraints of the path (isentrope, adiabate) are switched similarly like it is done in the cycle
of the power booster. Here, we have a state space characterized by E( ) in� ,

�� , � ,
�

�
thermodynamics we have the inner energy U(S,V) or any other potential. 
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Captions: 

fig.1a: The Wuerth power booster: basic setup 

                                                                                         
fig. 1b: The Wuerth power booster : here- implementation of the constraint of = -3/4 
The working cyle consist of 3 phases: 
1) Acceleration with constraint switched on 
2) Equalization: 
Case 1: Constraint mechanism decoupled 
acceleration of the rotors separately from the RPM of the slab by rotating the central gears
until they move in phase as a rigid body with the slab, comp. fig.3 
Case 2: Constraint mechanism decoupled, braking at constant RPM of slab, or 
3) Deceleration as rigid body and harnessing surplus energy 
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fig. 1c: A "perpetuum mobile flop" of the author illustrating here the belt drive mechanism of
the rotors. The Plexiglas rotor corresponds to the slab. Its rotation angle is characterized by
the -coordinate. It rotates around the central axis on a bearing. The central gear wheels are�

fixed to the central axis. The central axis can be rotated together with the rotors, as well. The
rotation angle of the central axis is defined as . In the acceleration phase 1 the angle  ,

� �

meaning. the central axis is fixed. In phase 2 the angle velocity  is accelerated to = . In
�� �� �

�

phase 3 the whole rigid setup is decelerated to 0 as a rigid system. 
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fig.2: The transformation of angles between a stationary observer and rotating coordinate
system. 
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Fig.3: Wuerth’s setup of the parametric rotator
During our measurements  the belts were completely removed. The same holds for the red
swastikas and the red parts inserted in the big disks.
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Fig.4a: Cycle with simplified setup of fig.5 ; exchanged mechanic energy vs. angular velocity
acceleration and deceleration with braked rotors
Starting point is at zero. A loss is measured as expected by conventional physics

Fig.4b: Cycle with simplified setup of fig.5 ; exchanged mechanic energy vs. angular velocity

Acceleration with free moving rotors
Deceleration with braked rotors
Starting point is at zero. A gain of about 10 % can be measured
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fig. 5a) the falling disk experiment
The metal disk + frame can rotate around the axis on the truss as a rigid body. 
In the experiment the disk  falls from the highest point to the lowest point.
The experiment is recorded by a video camera. From the video pictures the coordinates of the
movement are recorded in aequidistant intervalls of the video frequency (25 Hz). The
recording time of the half pictures is set to 1/1000 sec.
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Fig.5b: angle and angular velocity vs. time for free movable disk in setup 7a)
the disks starts at the top position and falls down 
angle vs. time are the red curves, the line are theoretical values, markers are experimental
values, the scale is on the left;
angular velocity vs. time are the blue curves, the line are theoretical values, dots are
experimental values, the scale is on the right

Fig.5c:angle and angular velocity vs. time for rigid non-movable disk in setup 7a)
the disks starts at the top position and falls down 
angle vs. time are the red curves, the line are theoretical values, markers are experimental
values, the scale on the left;
angular velocity vs. time are the blue curves, the line are theoretical values, dots are
experimental values, the scale is on the right
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fig.6a: the "gliding pearl" experiment
The stick can rotate around the axis on the support. 
In the experiment the stick with the pearl on it is started at the highest point and fall down to
the lowest point. During this process the brass body moves outwards.
The experiment is recorded by a video camera. From the video pictures the coordinates of the
movement are recorded in aequidistant intervalls of the video frequency (25 Hz). The
recording time of the half pictures is set to 1/1000 sec.



25

fig. 6b: "phase plane" angular velocity vs. angle of the gliding pearl experiment
the line are theoretical values, markers represent experimental measurements

fig. 6c: "phase plane" radial velocity vs. radius of the gliding pearl experiment
the line are theoretical values, markers represent experimental measurements
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Fig 7a: The Imris experiment     Phase 1 Alu frame (slab) and hammer weight  (=asymetric
rotor)  rotate in phase clockwise around the central (black) axis as "rigid" body

Fig.7b: the Imris experiment     Phase 2 Alu frame (slab) has bounced against weight( on the
left) and is stopped down. The hammer  weight  (=asymetric rotor) continues to rotate at
short radius.of rotation clockwise.
-----------------------------------------------------------------------------
*) anti - © = anti-copyright: text is free and can be copied  if authorship and priority dates are
acknowledged and if contents is reproduced correctly
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