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Preface

It is well known generally since the 1970ties [1, 2] that our natural resources are finite.

In order to avoid the end of our comfortable era there exist two possibilities:

Either we spare up and recycle the available resources or change the selection of the

”laws” we apply to build our machines consuming the resources.

So about 25 years ago the author decided naively to ”crack the Second Law” because

this physical law mainly is responsible for the energy crisis. The strategy was to check

the many claimed systems discussed by the ”underground science” scene because offi-

cial science was biased and avoided to discuss the theme. So the author was enforced

to master autodidactically the basics of classical physics mainly. In the beginning

he fell at least into every trap because he was blockheaded and not very competent

and also did not found competent willing able partners for discussion. However, after

years of learning by flops he got the insight that it does not make sense to crack the

Second Law. It was better to comprehend it as a special case embedded in a wider

general mathematical framework. This approach allows to recognize other systems

hidden and published in the official science literature which are better candidates to

produce the wanted effects. These systems are beyond the Second Law because the

basic conditions of the application of equilibrium thermodynamics are missing.

The work was difficult especially from the emotional point of view. Suffering under

”perpetuum mobilitis” is a taboo of science which drives all honest workers into iso-

lation and errors, both oftenly unconscious mechanisms to reduce stress. Another

hindering problem of ”perpetuum mobile science” is and ever was [3] that especially

fraudulent motivated persons oftenly are involved in the theme. Perpetual motion is a

big dream of course. So any open serious effort clarifying the theme attracts immedi-
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ately the interests of influential people. However, fearing the consequences they do not

really want to participate in the hard painstaking and oftenly frustrating work itself.

They prefer to propose the big perpetual money and power machine projects, try to

obtain the control and and so they tend to pervert and/or destroy even sincere inten-

tions. In order to protect the project and also myself of being misused, I blocked any

interest of my environment in the second half time of this work. So this book is written

almost completely alone with no helping field. Although I applied maximum care in

the presentation it is clear that under these conditions non-perfectness, mistakes and

wishful thinking may be possible in the book despite of all efforts. So I decline any

liability for wrong informations and its consequences. I transfer the responsibility back

to the reader. Nevermind I am sure that some good ideas will remain. I am glad if I

obtain any critics if it is sincere, helpful and constructive.

I have to add the following diclaimer:

This book is grown as an individual and private non-profit initiative. If it is not noted

otherwise the author speaks only for himself and not for any institution or company.

Berlin, in summer 2014

email: w.d.bauer@t-online.de
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Chapter 1

Introduction

A functioning perpetuum mobile is an old dream of mankind containing much philo-

sophic projections we have about the world. The oldest ideas are from India going

back to the 5th century AC. The two volumes of Dircks [4, 5] refer the ”state of the

art” until 1870 and the book of Ord-Hume [3] until ≈ 1970. Today many websites of

the internet discuss the theme and its systems mostly on a popular level.

The scientific discussion began with the age of Enlightement and was positive in the

beginning. Bernoulli und Boyle discussed Perpetui Mobilia, Leibnitz wrote a letter

of recommendation for Bessler [6]( the constructor of the Bessler wheel). But due to

many failures and frauds the climate changed. Hamilton’s mechanics destroyed the

belief in a mechanical Perpetuum Mobile. The First Law (energy conservation) sug-

gested, that energy can not be gained, the Second Law braked down any research with

the claim to change heat to work without losses. So the mainstream thermodynamic

scientist of today prescribes dogmatically that every material description has to im-

plement the Second Law a priori. In deed the highly busy scientific colleagues from

the other departments do not note this theoretical stuff normally. Oftenly they do not

realize or consciously ignore the consequences of their results they are publishing. This

allowed me to find systems beyond the old conventional scope hidden in the scientific

literature. These I present here as non-volunteering candidates for an evaluation.
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2 CHAPTER 1. INTRODUCTION

I will banalize the idea of the perpetuum mobile: I define a Perpetuum mobile as

1) a machine which comes back to the initial state after a cyclic process - and

2) a machine which gains mechanical, electrical or chemical energy by a cycle ex-

changing with a regenerative environment. It does not change the materials in the

environment at the interesting space and timescale.

In order to avoid gambling and to reduce the number of flops I apply diagnostic criteria

in order to recognize these systems with the aim to pick out the more promising cases.

So this book is organized as follows:

In chapter 2 I consider the tools of system theory and discuss which type of candidate

systems are allowed by mathematics. In chapter 3 it is discussed what the term en-

ergy conservation really means seen by the different philosophical points of view. In

chapter 4 I derive the equilibrium thermodynamics in the field formulation. This is

done in order to check it against Second Law violating claims in fields. I show that

the thermodynamic framework is not complete and that the concept of temperature

and entropy can loose its original sense in the general case. In chapter 5 I discuss

a unpublished historical system of a mixed steam engine including spontaneous con-

densation processes. I evaluate the system and develop a new theory of the nonlinear

dynamics of the phase transition gas to liquid. From this example I conclude that

changing to the terminology of nonlinear dynamics makes the Second Law obsolete.

In chapter 6 I show that the phenomenon of inverted hysteresis is outside of equilib-

rium thermodynamics and so beyond the Second Law. As an example it is shown that

the conventional energy balance of a storage FET capacity is violated because this

system consist of a cycle patched together unconsistently by classical and quantum

mechanical elements. According to my analysis this system gives off net energy af-

ter an electric capacitive cycle. Furthermore I show that permanent running magnet

motors are possible. They can be understood easily and are engineered by standard

methods.

Dieter
Linie
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Chapter 2

General System Theory

2.1 Mathematics, System Theory and Physics

Mathematics imagines what can be thought logically. Physics investigates what can

be realized. System theory translates the terms of mathematics into physical language

in order to bring both disciplines together as far as possible in order to allow physics

to realize what can be imagined. Table 2.1 shows the idea of ”inter concept mapping”.

Table 2.1: Translation Tabel between Mathematical and Physical Concepts

mathematics system theory

variable observable

function system answer

operator measurement process

theory experimental setup

3



4 CHAPTER 2. GENERAL SYSTEM THEORY

2.2 the Helmholtz Decomposition

The Helmholtz decomposition [7][8] splits up any field F := FV +FP (or more generally

any tensor) into two components : an antisymmetric vortex field FV and a symmetric

potential field FP . The vortex field FV is derived from a vector potential describing a

state field, the potential field FP is derived from a unique potential state function U .

Consequently we can separate any classical physical system into two pure components,

one is the potential field system, the other is the vortex system. Generally any classical

physical system can be composed again by adding the pure components.

The pure classes are discussed in the next two subsections.

2.2.1 Potential Field Systems

We make here the restriction to potential field systems whose physical state Fi(Xi)

is derived from a potential function U(Xi). Xi is a vector of experimental values

characterizing the empirical state of the system. Then the differential

dU =
∑
i

∂U

∂Xi

dXi =
∑
i

Fi(Xi)dXi (2.1)

describes the part of a cyclic reproducible process, cf. also 2.3. After a cycle it holds

∮
C

dU =

∮
C

∑
i

∂U

∂Xi

dXi = 0. (2.2)

This yields rot ~F = 0 [8]. If all terms FidXi coincide with work definitions it follows

”energy conservation” as the logical consequence of the reproducibility of the system,

cf. the definition of reproducibility in sec. 2.3.

These consideration here fit exactly to known physical systems like the Hamilton func-

tion H(p, x) of classical mechanics or the internal energy U(S, V ) of thermodynamics.

In mechanics there exists energy conservation from point to point, i.e. dH(p, x) = 0,

in thermodynamics this is energy conservation after a cycle,i.e.
∮
dU ≡

∮
dH(V, S) = 0

.
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2.2.2 Vortex Systems

We make here the restriction to vortex systems whose states are derived from a vector

field ~W ( ~X) by rot ~W ( ~X) = ~F ( ~X). This yields div ~F = 0. ~X is a vector of indepen-

dent experimental values being the empirical state of the system. ~F ( ~X) := Fi(Xi) is

the field function whose choice allows the description of all dependent experimental

parameters which depend from Xi. For a vortex field it holds after a reproducible cycle:

∮
C

∑
i

Fi(Xi)dXi 6= 0. (2.3)

If all terms Fi(X)dXi coincide with work definitions we have ”energy non-conservation”.

So we can select out classes of ”perpetuum mobile candidates” as [9]

a) systems Fi(Xi;λ) driven by fluctuations and b) full non-conservative systems Fi(Xi).

Under a) we find- sorted from big to small scale - tide power plants, clocks driven by

the fluctuations of air pressure [3] or arm movement, energy harvesting and ratchet

systems [10], Maxwell demons and zero-point-energy systems [11]. As a limit case we

obtain the classical perpetuum mobile of 2nd kind if the driving fluctuating ambient

medium is purely thermal. This classical type of perpetuum mobile changes heat en-

ergy to mechanical energy with 100% efficiency and cools down the environment.

Under b) we find systems applying a non-conservative coupling, cf.fig. 2.1 to a conser-

vative or non conservative driving field. This are generalized wind wheels i.e. electro-

magnetic inverted hysteresis systems,see 6.2. or permanent magnet motors,see 6.3.1.

Figure 2.1: generalized system with non-conservative coupling to a field



6 CHAPTER 2. GENERAL SYSTEM THEORY

2.3 System Theory Concepts

System theory concepts are the building blocks of a meta-language of the different

disciplines of science. We illustrate this idea by reintroducing here some well known

simple terms and definitions. Some are applied in section 2.2.1 .

reproducibility:

A system is called reproducible if it is possible to perform a cyclic process starting at

any state X(t0) at t0 coming back again at t1 to the initial point X(t1) = X(t0) and

Fi(X(t0)) = Fi(X(t1)) on any path. Therefrom one concludes:

If the system is completely defined by a potential state function U(Xi(t)), then the

reproducibility of the system holds also for the potential definition because

∮
dU =

∑
i

∮
∂U

∂Xi

dXi =
∑
i

∮
Fi(Xi)dXi = 0. (2.4)

For vortex field systems, however, the situation is different. They are reproducible but

the cycle integral in the field is non-zero for the most general case, i.e.

∑
i

∮
Fi(Xi)dXi 6= 0. (2.5)

However, here an interesting special case exists for spatially system where any cycle

around the singularity yields the same integral sum on any cyclic path. This may be

the cause of the quantization of systems.

symmetry:

A system is said to have a symmetry if its properties are reproducible after a trans-

formation of the coordinates Xi. This may be a mirroring, a translation or a rotation.

isotropy:

A system property is called isotropic if its definition does not depend from the position

or the direction in space.
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2.4 System Theory applied to Economy

Between physics and economy there exists a system theory analogy between money

and energy which I will complete here. Therefore I present the following examples:

We take 4 points from a arbitrary force field in space. We assume a test object

moving in the field with forces acting on the object . The energy differences of the

object between these points are shown in tab.2.2. We calculate now the energy nec-

essary to move the object over the points in the field on different closed pathways.

According to tab.2.2 this difference between P1 → P3 is 3. If one returns directly

P3 → P1 the difference is -3 and the sum of both pathes is 0. But, if one returns over

P2, i.e. P3 → P2 → P1 then the differences are summed up to -4+2=-2 ! This yields :

P1→ P3→ P2→ P1 =̂ 3− 2 = 1 .

Because a closed cycle with a non-zero result is found for this system the generating

field is called non-conservative. In physics, chemistry and material science, however,

the most well known systems fullfil energy conservation. I remember here to the

electrochemical row of potentials, to the energies of the spectral states in quantum

mechanics, to the Hess heat theorem in thermodynamics and the table of the thermo-

voltages of the different materials (Seebeck-effect). If the potential differences of these

systems are represented in a matrix as done above, a zero has to be the result for any

closed (loss free) cycle.

Table 2.2: energy differences in an arbitrary force field

from point1 point2 point3 point4

point1 0 2 -3 -5

point2 -2 0 -4 -11

point3 3 4 0 -8

point4 5 11 8 0
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Table 2.3: Exchange Rates of Different Stock Markets on 12.6.03

place London Frankfurt New York Tokyo

currency (Pfund) (Euro) (Dollar) (Yen)

Pfund 1 0.70 0.5932202 0.0503597122

Euro 1.428571 1 0.8474576 0.00719424461

Dollar 1.68571378 1.18 1 0.0084892086

Yen 198.571369 139 117.7966 1

The idea can be generalized principally also for the other conserved quantities like

momentum and angular momentum. And it can be transfered as well to economics:

In tab. 2.3 exchange rates of currencies are shown valid at the different stock markets.

If one tries to run money on any paths over the different stock markets at the ex-

change rates from tab. 2.3 a gain is not possible (overlook the errors in the last digits

!) on any path. Because any gain (or loss) is impossible for any cycle here we call

the matrix ”conservative”. In other words the market is stable due to an equilibrium

between offer and sales.

Of course this is a situation which is not desirable for any merchand. He will look for

a non-conservative situation on the market in order to make money by a gain cycle of

his investment.

So I can summarize the comparison between physical and economic cyles by the fol-

lowing tabel of analogies tab.2.4:

Table 2.4: Tabel of Analogies between Physical and Economic Concepts

physics economy

energy money

field market

cycle economic money cycle

gain return of investment

stable state equilibrium between sales and offers

non-conservative cycle economic cycle with gain or loss
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2.5 Conservativeness or Stability abstracted

From the examples of the last section the following question arises:

What are the general mathematical properties of conservative matrices which charac-

terize the ”borderline” where any cycle can be proceeded without gain or loss ?

There, applying the addition as operation, -see the example with the energy field - the

”energy” sum or the gain is zero after any cycle. If this is fulfilled, the cycle is called

conservative, otherwise the cycle is non-conservative.

If we apply the multiplication as operation the overall factor has to be 1 after the

conservative cycle is closed. Otherwise - see the economic example - the market is not

in equilibrium and the matrix is non-conservative. So, generally I ask:

Is it possible to find a test operation to check whether the matrix is conservative ?

To answer this question we regard the elements a1i und a3i from the first and third line

of table 2.3. We multiply the element a31 with every element of line 1. If all elements

of the new calculated row 1 coincide with line 3, then the matrix may be conservative

- i.e. in formulas

a3i = a1i.a31 .

This fact has to be generalized for all rows of the matrix. Then, we can define the rows

to be ”multiplicatively” dependent which is also an equivalent conservative property.

The analogue is done for addition with the values of tab.2.2 . Row n is compared with

row m. Due to the additivity the worked performed on a path over three points is

ani = ami + anm

if the field is conservative. If ani can be transformed according to this operation then

the lines are ”additively dependent”. If this operation is done with any rows of the

matrix no gain or loss can be obtained in any closed cycle. Under this conditions the

set in matrix is defined to be conservative.

If the lines are multiplicatively dependent the last definition of conservativeness can

be applied as well if one writes.

log(ani) = log(ami) + log(anm)
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I summarize my considerations in terms of group theory [12] by the following definition:

We have a matrix M containing a set of elements aik . We denote the generalized

operation as ◦ . We write down a generalized definition of the conservative property

of the set of a matrix as follows:

A matrix M is called conservative, if all elements indexed by i of any row ami can be

transformed into another present row ani according to the general transformation

ani = anm ◦ ami

This proposal may be the most generalized definition of a conservative systems.

An alternative weaker diagnostic definition is:

For a conservative matrix holds:

amn = a−1
nm and ( amn = e if m = n )

This holds because amn ◦ anm = a−1
nm ◦ anm = e (e ≡ identity element] .

This means: any action to a state and back again has to yield no gain or loss.

Any conservative system fulfills this necessary condition. However, not every system

is conservative which fulfills the condition,cf. the example from sec. 2.4 and tabel 2.2.



Chapter 3

About Energy Conservation

3.1 the Philosophy behind Energy Conservation

Discussing basic ideas like the first law inside or outside of the scientific mainstream

is sometimes difficult. This is caused oftenly by the fact that the people do not realize

that they discuss unconsciously with different philosophical projections in which they

are believing. This hinders an effective communication and understanding. To explain

I give here an example illustrating the typical discussion about the first law :

A thermodynamic textbook [13],p.7, denotes the total differential of internal energy U

dU = T ∗ dS − p ∗ dV (3.1)

as the first law i.e. the law of energy conservation. De facto the term dU is not

empirically founded and can not be determined independently by one instrument in

one measurement. It is calculated normally from the terms of the right side of the

equation, which are all empirically accessible. So equation 3.1 is a defining equation for

dU only and not an empirically proved valid law of nature as suggested in textbooks.

11



12 CHAPTER 3. ABOUT ENERGY CONSERVATION

In order to clarify the present different points of view I characterize here three different

typical philosophical positions called natural philosophic, mathematical and operative.

1) The natural philosophic standpoint is the oldest in history. It is very near to the

most common general belief of the people. It regards energy like a fluidum which can-

not be created or destroyed. The typical ”scientific” protagonist of this way of thinking

is Rudolf Mayer. He was very lucky that he found the first working example of energy

conservation law beyond mechanics. Mayer derived the energy equivalent between

heat and work [14] for the very strong special case of the ideal gas which in deed obeys

an observable energy conservation from point to point due to the thermodynamic con-

dition dU = 0 valid for this case. Of course Mayer overgeneralized his findings and

proclaimed a general valid new law of nature. If he chosed liquid water between 0◦ and

4◦ Celsius as working substance instead of an ideal gas, his considerations would have

failed due to dU 6= 0. Since Clausius [15] and Gibbs [16] the description of these real

systems is achieved by using potential functions. Energy conservation can be proved

only after a closed cycle due to
∮
dU = −

∮
pdV +

∮
TdS = 0.

Later, Mayer’s philosophy obtained support by Einstein’s discovery of the equivalence

formula between energy and mass E = m ∗ c2 which enforced as well the materialistic

point of view of the common popular natural philosophy.

2) The mathematical way of speaking about energy conservation is exactly the way

how a variable is handled in mathematics. These statements are purely formal and

contain no physical contents. So this point of view can be opposite to any natural

philosophy. The mathematical statement is strongly depending from the way how

we have chosen the description of the system by the arbitrary choice of the system

border. For example we assume a simple mechanical system consisting of a spring and

a mass coupled together. If both parts together (friction is neglected) are regarded

to be the system then the energy is conserved. If the mass only is regarded to be

the system which is driven from outside by the spring represented by a non-holonomic

forcing term then the mass system alone does not conserve energy [17]. So, the flexible

mathematical rhetorics can be made helpful in order to see the ”scientific” physical

law what we want to see. It is clear that these arguments are oftenly misused by the

natural philosophic propaganda. We note that the resulting ”energy conservation by

selective perception” cannot be an argument in favour of any ”law of nature”.
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3) If one follows the work of a physicist one observes that he wants to establish quan-

titative balances of measureable entities. In other words: the belief in energy con-

servation is an useful driving hypothesis of his scientific work. If an energy balance

can be established one has ”energy conservation”, sometimes even stronger ”energy

conservation per definition” finally. Writing down an equation of the energy balance

enables the description of the investigated system finally. I call this strategy the op-

erative standpoint. It was the line of H. v.Helmholtz [18] and it is rationalized also by

the philosophy of Kant, Wittgenstein and by the school of neopositivism [19].

Today the last point of view is the most actual, pragmatic and honest one in my

eyes. So ”religious” symbol oriented physical concepts are avoided. In the end it

is irrelevant whether the first law is proven empirically or not. ”The principle of

energy conservation” [18] is applied as an instrument for explanation always if it is

appropriate. If the application is not so obvious or impossible the discussion of the

energetic aspect is avoided. It is clear that under this condition any discussion about

the scientific correctness of this ”law of nature” does not make much sense.

This consideration holds also for other conserved quantities. This is shown in the

example of fig.3.1. There the angular momentum J of the masses mounted on the two

weighless wheels is ”conserved” according to J̇ = J̇1 +nJ̇2 = 0 (with n = gear ratio).

Figure 3.1: two masses mounted on wheels in a field and connected by a gear (constraint)

If constraints are introduced between independent objects conserved entities may change.

this projection

Dieter
Linie
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3.2 the Energy Flux Network

Due to the axiomatic natural philosophic belief in energy conservation the normal way

of physics to handle non-conserving energy systems is to look for a compensation by

manipulating the system border and by adding to the energy balance a complement of

elements which may represent the outside energy influxes and losses. This procedure

makes the energy balance ”correct” and descibes an energy flux network.

For instance if one regards a pure electrical description of a relaxing RC-low pass

network it contains no thermodynamical variables. But the differential equation of

the charge Q (with C :=capacitance R := resistance and U(t > 0) = 0 :=voltage)

U(t) = Q/C +RQ̇ (3.2)

is also an energy balance of WR and WC if the voltage U(t) is multiplicated by the

current I and integrated over the time t

WC +WR :=

∫
0

∆t

I(Q/C +RQ̇) dt = 0 (3.3)

In the end one obtains the simple energy equation describing that the energy W is

given off from the capacitance C and taken up by the resistor R.

Nothing about heat and temperature is said here so far.

In order to include the thermodynamic aspects like temperatures and heat one has

to enlarge the describing equation to a system and include here for instance a simple

heat transport equation describing the heat loss

U(t) = Q/C +RQ̇

(3.4)

CE
dT

dt
= K(Te − T )− T.V (∂P/∂T )E ∂E/∂t (3.5)

In the second equation I introduced T :=temperature of the object, Te :=temperature

of the environment, CE :=heat capacity at constant field E, K := heat resistance,

V := volume P := polarisation. The first term on the right side of the second equa-

tion describes the heat flux from and to the environment, the second term is the

adiabatic contribution if the field is changing fast. If we increase the accuracity of the
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description by complication one may obtain in the end a spatial ”multiphysics” partial

differential equation system which represents all nodes of the more complete energy

flux network system + environment whose nodes are the ”multiphysics” ”energy con-

servation” balances of the different sorts of energy.

3.3 How to handle Overunity Systems

In the case of the pretended ”overunity” systems the source of energy is not obvious

at first sight. The conventional approach suggests chemical or nuclear processes burn-

ing down slowly. ”Overunity people”, however, oppose this and prefer here theories

believing that the energy source may be a sort of ”dark energy” from space or from

the fluctuating vacuum field of zero point energy [11]. For instance a proposal exists

how to connect a ”vacuum flux” directly to the Maxwell theory [20]. These theo-

ries appear to be strange at the first sight, they seem to be doubtful because their

interconnection with experimental reality is weak normally and the ideology behind

the math too speculative. So they are far off from being generally accepted by the

scientific community[21]. Nevermind, we will profit by this ideas and will show in sec.

6.2 that a similar conventional approach based only on a modified interpretation of

the Maxwell equation is sufficient to handle so called ”overunity” problems.

In this way we remain open for any experimental explanation with respect to the source

of energy. Before we assume an ”outside” source of energy we recommend to check

first the trivial hypothesises by tests of long durance. If any burn down processes in

the material can be excluded then we can test the overunity ideas which include the

environment. Again the multiphysics ansatz is appropriate and we need experiments

including other disciplines of physics in the environment of the system in order to be

able to find the energy flux system at the outer nodes of the energy network.

So I conclude: overunity systems have to be handled as unknown physical systems.

Especially vortex systems may have features attributed to overunity systems.





Chapter 4

Thermodynamics at the Limit

4.1 Introduction

In this chapter I discuss systems existing in a regime at the limits of classical equilib-

rium thermodynamics. First I derive in section 4.2 the classical equilibrium continuum

thermodynamics conventionally in a field formulation. The variational method is ap-

plied here for the Hamiltonian, the most results derived are well known and near to

textbook knowledge. In section 4.3 the same is done for thermostatistics. Again the

results are old, but the derivation method may be new: I will derive the equilibrium

distribution of the particles from a variational principle of the Hamiltonian energy.

The theory is applied to a mixed gas in a centrifuge. In section 4.4 I present a general

definition of temperature which is able to describe more classes of phenomena than the

conventional definition of temperature. In section 4.5 I discuss known systems which

may point for the limits where the application of the equilibrium thermodynamics and

the Second Law may be questionable. Section 4.6 shows the conclusions.

17
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4.2 Continuum Thermodynamics

The total Hamilton energy (or internal energy) H∗ of a thermodynamic system in-

cluding an external potential field U is defined as (the definition symbol is ≡ )

H∗ ≡ H(S(r), r, ni(r)) + U(S(r), r, ni(r))

= H(S, r, ni) +
∑
i

∫
Ui(S, r, ni)dni , (4.1)

where H is the internal energy of the fluid without the outer influence of the field. H

and H∗ are denoted here also as a Hamilton energy. S is the entropy, ni is the mole

number of each particle, Ui ≡ ∂U/∂ni is the partial potential energy of a species i and

r is the space coordinate. From (4.1) the total differential follows

dH∗(S, r, ni) =

(
∂H

∂S
+
∑
i

∫
∂Ui
∂S

dni

)
dS

+

(
1

A

∂H

∂r
+

1

A

∑
i

∫
∂Ui
∂r

dni

)
Adr

+
∑
i

(
∂H

∂ni
+
∂U

∂ni

)
dni . (4.2)

I restrict the local pressure tensor of the fluid to be isotropic. It holds ∂H/∂r ≡ P̂.A

with P̂ ≡ pressure tensor and A ≡ |A| ≡ area of the space cell. Then, using the

definition dV ≡ A.dr the derivatives of (4.2) can be written as
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T ≡ ∂H

∂S
+
∑
i

∫
∂Ui
∂S

dni

−P ∗ ≡ ∂H

∂V
+
∑
i

∫
∂Ui
∂r

ρi(r)dr

≡ −P +
∑
i

∫
∂Ui
∂r

ρi(r)dr

µ∗i ≡ ∂H

∂ni
+
∂U

∂ni
≡ µi + Ui . (4.3)

The definitions are: T ≡temperature, µi
∗ ≡ the global chemical reference potential of

a substance, P ∗ ≡ global reference pressure, µi ≡ chemical potential of a substance,

P ≡ empirical barometric or hydrostatic pressure, ρi ≡ A−1∂ni/∂r ≡ density of a

species of particles and A ≡ area of the space cell due to fluctuations.

The equilibrium between two adjacent space cells at rk and rk+1 in a potential field

can be found if the variation of Hamilton energy H∗

dH∗ = T (rk)dS(rk) + T (rk+1)dS(rk+1)

− P ∗(rk)dV (rk)− P ∗(rk+1)dV (rk+1)

+
∑
i

(µ∗i (rk)dni(rk) + µ∗i (rk+1)dni(rk+1))

= (T (rk)− T (rk+1)) dS − (P ∗(rk)− P ∗(rk+1)) dV

+
∑
i

(µ∗i (rk)− µ∗i (rk+1)) dni = 0 (4.4)

is minimized to zero in the equilibrium. The last line of the last equation follows due

to the constraints dS = dS(rk) = −dS(rk+1), dV ≡ Adr ≡ dV (rk) = −dV (rk+1) and

dn = dni(rk) = −dni(rk+1) which describe the fluctuating exchange of entropy, volume

and particles at the border between two adjacent space cells in space. Because the

differentials dS, dV and dn are non zero, (4.4) yields the equilibrium conditions
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T (rk) = T (rk+1)

P ∗(rk) = P ∗(rk+1) (4.5)

µ∗i (rk) = µ∗i (rk+1) .

These equilibrium conditions above can be rewritten as well in the form

T (rk)− T (rk+1)

rk − rk+1

=
∂T

∂r
= 0

P ∗(rk)− P ∗(rk+1)

rk − rk+1

=
∂P ∗

∂r
= 0 (4.6)

µ∗i (rk)− µ∗i (rk+1)

rk − rk+1

=
∂µi

∗

∂r
= 0 .

The equilibrium can be interpreted as well as the trivial case result of an variation

where the (physical) total Hamilton energy H∗(u(r)) is the (mathematical) Lagrange

function to be optimized. u is the (”velocity”) variable which is identified here as

u ≡ (S(r), V (r), ni(r)) . We have to to optimize the function

1

∆Rj

∫ ∆Rj

0

H∗(u)drj → extremum or

∫ ∆Rj

0

δH∗(u) drj = 0 . (4.7)

In the context of non-equilibrium thermodynamics the equations (4.6) are the ther-

modynamic forces [22] which are zero in the case of equilibrium. The equation system

(4.6) is sufficient information in order to solve for the spatial distributions of pres-

sure, density and molar ratio of a mixture in a field under isothermal conditions if the

distributions of the particle components do not influence the field itself. This holds

for thermodynamic systems in any gravitational or centrifugal potential fields. In the

appendix 4.7 the numerical calculation method is demonstrated for a binary system

in a centrifugal field near to the critical point.

For systems with electric and magnetic fields other partial differential equations like

the Poisson equation or the Laplace equation have to be added to the whole equation

system because the spatial distribution of dielectric or magnetostatic liquids [23] in

the volume can modify the field itself.
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4.3 Thermostatistics

It is well known that the mechanic equations of motion can be found as solutions of a

Lagrange variation problem. The solution is obtained, if the Lagrange function L has

an extremum, where x(t0) = x0 and x(t1) = x1 are start and end point of the path.

Then it holds

I(x) =

t1∫
t0

L(x, ẋ; t)dt → extremum . (4.8)

The Lagrange variation problem can be regarded as well as a special case of a general

problem of control theory [24] [8] where the control variable u(t) coincides with the

velocity variable ẋ = f(u, x; t) = u . The functional of this control theory problem is

J(x) =

t1∫
t0

L(x, u; t)dt → extremum (4.9)

with ẋ = u, x(t0) = x0, and x(t1) = x1 for the special case discussed here.

The Hamiltonian is defined as

H = pu− L(x, u; t) . (4.10)

The adjunct system is defined by

ṗ ≡ Lx(x, u; t) . (4.11)

According to the Pontryagin theorem of control theory this problem can be solved if

the extremum of the Hamiltonian H(p, x, u; t) is found. (For proofs, see [24]). So in

order to obtain a determining equation for the extremum, H(p, x, u; t) is derived for u

and set to zero

Hu = p− Lu(x, u; t) = 0 . (4.12)
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If this equation is differentiated for t the solution is the Euler-Lagrange equation

d

dt
Lẋ −

dL

dx
= 0 (4.13)

if ẋ = u and ṗ = Lx as defined above.

The equation ẋ = f(u, x; t) = u applied here describes the uncontrolled free running

system. It represents the trivial case of control theory which coincides with the Hamil-

tonian mechanics. In this case (4.10) is also a Legendre transform.

Because a thermodynamic system can be regarded as a mechanic many particle system,

the variational features of Hamiltonian mechanics should be present in thermostatis-

tics as well. In equilibrium, due to energy conservation, the Hamiltonian of mechanics

is constant. We assume the hypothesis of ergodicity to be valid for the system. Then

the time mean of total energy is identical to the ensemble average of thermostatistics.

Or tranlated into mathematic language (with ∆T as the measuring time interval)

Htot ≡
1

∆T

∆T∫
0

∑
i

(εi + Ui +
∑
j,i

Uij)dt

=

∞∫
0

∞∫
0

W (εK , ni)εK dεKdni (4.14)

=

∞∫
0

∞∫
0

∞∫
0

∞∫
ε0

Ŵ (ε, ni, V ) ερ(ni, V ) dεintd|U |dnidV .

W (εK , ni) is the canonic probability distribution of the total volume as defined in

Mayer’s book [25] p. 6+7 with the eigenvalue of the total Hamilton energy εK . In the

third line Ŵ (ε(εint, U), ni(r), V (r)) is the probability function of each volume element

dV (r). The density ρ(ni(r), V (r)) represents the space profile of the total particle

number density. The energy ε of a particle is defined by

ε ≡ εkin + Uint(ni(r), r) + U(ni(r), r) ≡ εint + U(ni(r) , r) (4.15)
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where εkin is the kinetic energy of the particle in the field, Uint is the mean field poten-

tial between the particles due to the real fluid behavior, εint is defined as εint ≡ εkin +

Uint and U is the potential energy due to a field applied from outside. An integration∫
..... dn i like in the last line of (4.14) should be read always as

∫
..
∫

..... dn1..dnm ,

where m is the number of components in the mixture.

As shown above the mechanic Hamiltonian has an extremum. We will see in the fol-

lowing that this feature can be transferred analogously to thermostatistics. Then, at

every space cell the Hamilton energy density function

Ĥ ≡ Ŵερ (4.16)

should have an extremum as well.

For the following calculation all symbols are made dimensionless by defining

H′ ≡ ±Ĥ(m+ 3)/(kT ) W ′ ≡ −Ŵµ∗−m(kT/(m+ 3))m+2

V0 ≡ kT/((m+ 3)P ∗) ρ′ ≡ ρV0

ε′ ≡ (m+ 3)εint/(kT ) U ′ ≡ ±(m+ 3)U/(kT )

n′i ≡ −(m+ 3)µ∗ni/(kT ) V ′ ≡ V/V0 . (4.17)

So, the calculation of mechanics (from (4.8) to (4.13) ) can also be done similarly

in thermodynamics if the mechanical variables are exchanged by thermodynamical

terms according to table 4.1 . After having defined the function X ≡ (ε′ + U ′)ρ′ and

identifying W ′ as the adjunct function of control theory we perform the optimization

H′tot ∼
∫
W ′X dε′ dU ′ dV ′ dn′i → extremum . (4.18)

Due to the present coincidence of the control theory with the Hamiltonian formalism,

the Lagrangian L′ can be calculated by a Legendre transformation of H′(W ′, X),

namely (cf. table 4.1)



24 CHAPTER 4. THERMODYNAMICS AT THE LIMIT

L′(ε′, V ′, U ′, n′i) = W ′∂X

∂ε′
+W ′ ∂X

∂U ′
+W ′ ∂X

∂V ′
+
∑
i

W ′ ∂X

∂n′i
−W ′X . (4.19)

Applying the abbreviations Xε′ ≡ ∂X/∂ε′, XU ′ ≡ ∂X/∂U ′, XV ′ ≡ ∂X/∂V ′ and

Xn′i
≡ ∂X/∂n′i, we calculate the Euler-Lagrange equation (cf. [26] p.191)(

∂

∂ε′
∂

∂Xε′
+

∂

∂U ′
∂

∂XU ′
+

∂

∂V ′
∂

∂XV ′
+
∑
i

∂

∂n′i

∂

∂Xn′i

− ∂

∂X

)
L′ = 0 . (4.20)

The result is the differential equation for W ′

∂W ′

∂ε′
+
∂W ′

∂U ′
+
∂W ′

∂V ′
+
∑
i

∂W ′

∂n′i
+W ′ = 0 . (4.21)

The solution of (4.21) is the distribution function

W ′ = W0
′exp[−(ε′ + U ′ + V ′ +

∑
i

n′i)/(m+ 3)] . (4.22)

If the definitions (4.15) and (4.17) are reinserted one obtains

Ŵ = Ŵ0exp[(−ε− P ∗V +
∑
i

µ∗ini)/kT ] . (4.23)

W ′
0 is set to 1 for convenience in (4.22). Then (4.23) is the grand canonic distribution

function which is extended here for thermodynamic systems in potential fields.

The norm of W ′ or Ŵ are chosen to be

∞∫
0

∞∫
0

∞∫
0

W ′(n′i, ε
′, U ′)dn′idU

′dε′ = 1

∞∫
ε0

∞∫
0

∞∫
0

Ŵ (ni, εint, U)dnid|U |dεint = 1 . (4.24)
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These constraints also fix P ∗ from (4.23) for given V, T and µ∗ and lead to

P ∗V/kT = ln (Z ′) with the grand canonical sum being defined as

Z ′ ≡
∫ ∫ ∫

exp[−(ε′ + U ′ +
∑
n′i)]dn′id|U ′|dε′, cf. reference [25].

Now, by using (4.17) the standard representation of thermodynamics can be derived

according to the procedure presented in Mayer’s book [25] p.8.

The mean number of particles in a volume is

n̄i =

∞∫
ε0

∞∫
0

∞∫
0

niŴ (ni, εint, U) dnid|U |dεint . (4.25)

The mean of the total Hamilton energy H∗ is

H̄∗ =

∞∫
ε0

∞∫
0

∞∫
0

Ŵ (ni, εint, U) ε dnid|U |dεint . (4.26)

The mean of the total Gibbs’s free energy G∗ is

Ḡ∗ =

∞∫
ε0

∞∫
0

∞∫
0

∑
k

Ŵ (ni, εint, U)niµ
∗
idnid|U |dεint . (4.27)

Using the definitions (4.15) and (4.17) it follows from (4.23) by differentiation

∂Ŵ

∂µ∗i
=

Ŵ

kT
[ni − V

∂P ∗

∂µ∗i
]

∂Ŵ

∂T
=

Ŵ

kT 2
[P ∗V −

∑
i

niµ
∗
i + ε− V T ∂P

∗

∂T
] . (4.28)

If both equations are integrated over all possibilities each sum of all derivatives is zero

because the sum of Ŵ is 1 according to (4.24). Therefore, the relations between the

corresponding mean values (indicated by bars) are
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Table 4.1: Analogous solution methods in mechanics and thermodynamics.

Mechanics Thermodynamics

functional Htot≡ 1
∆T

∆T∫
0

∑
i

(
p2
i

2mi
+Ui+

∑
j,i Uij

)
dt → H′tot≡

∞∫
0

∞∫
0

∞∫
0

∞∫
ε0/kT

W ′×

×(ε′+U ′)ρ′ dε′dU ′dn′idV
′

Hamilton function H≡
∑

i

(
p2
i

2mi
+Ui+

∑
j,i Uij

)
→ H′ ≡W ′(ε′+U ′)ρ′≡W ′X

independent variable t → t ≡(ε′,U ′,n′i,V ′)

dependent variable xi → X ≡(ε′+U ′)ρ′

Lagrange function L ≡
∑

i pi(t).ẋi−H → L′ ≡
∑

iX.
∂X
∂ti
−H′

solution of Euler-Lagrange xi(t) = ... → W ′(ε′,U ′,n′i,V ′) = ...

∂P ∗

∂µi
= n̄i/V

∂P ∗

∂T
= (V T )−1[H̄∗ + P ∗V − Ḡ∗] =

S̄
V

. (4.29)

From the second equation of (4.29) the entropy S̄ can be calculated to be proportional

to Shannon’s definition of entropy

S̄ = −k
∞∫

0

∞∫
0

∞∫
ε0/kT

W ′ln(W ′)dε′d|U ′|dn′i , (4.30)

cf. as well the definitions(4.22) and(4.23).

Note that the entropy of the field extended formalism of thermodynamics has the same

structure as without field. Therefore, it can be concluded that the maximum entropy

property holds as well if fields are taken into account.
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The calculation procedure from (4.16) to (4.30) works as well for non-extensive ther-

mostatistics and allows to calculate the Tsallis distribution.

For Tsallis non-extensive thermodynamics W ′ is replaced by f(W ′) = W ′ q/N where

N is the normalizing factor, cf. [27]). Starting with the Hamiltonian H′ ≡ W ′ qε′ρ′/N

the differential equation of the distribution is

∂W ′

∂ε′
+
∂W ′

∂U ′
+
∂W ′

∂V ′
+
∑
i

∂W ′

∂n′i
+W ′ q = 0. (4.31)

A possible solution has the form W ′ = [c + (1 − q)s]
1

1−q with s ≡ −(ε′ + U ′ + V ′ +∑
i n
′
i)/(m+3). Coincidence of the solution with the Boltzmann distribution for q → 1

demands an initial condition W ′(s = 0) = 1. This can be resolved for c = 1. Hence

follows the solution

W ′ ≡ exq = [1 + (1− q)x]
1

1−q . (4.32)

This is the Tsallis distribution.

Similarly, if every symbol W ′ is replaced by f(W ′) = W ′ q/N in the equations (4.24)

- (4.30) the Tsallis entropy

S̄ = − k

N

∞∫
0

∞∫
0

∞∫
ε0/kT

W ′ q logq(W
′) dε′dU ′dn′i. (4.33)

follows. Here we applied the definition logq x ≡ x1−q−1
1−q as inverse function of exq .

The formalism can be generalized replacing W ′ or W ′q by a general f(W ′(s)) to find

the adequate entropy. With a generalized logarithm s ≡ logf (W
′) [27] as the inverse

function of a generalized exponential function W ′(s) ≡ esf , a general definition of the

entropy for any arbitrary function f(W ′(s)) follows as

S̄ =
k

N

∑
i

f(W ′
i )logf (W

′
i ) . (4.34)

This general entropy definition is consistent to the thermodynamics in section 4.2.
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4.4 the Concept of Temperature

The thermodynamic entropy S is defined by the so-called Gibb’s fundamental equation∑
j

dQj =
∑
j

TjdSj = dU + pdV −
∑
i

µidni + ... . (4.35)

The points in equation (4.35) indicate forgotten possible contributions like field en-

ergies for instance. The entropy S or the entropies Sj are necessary functions which

have to be introduced in order to be able to close the cycle.

Gibbs and Boltzmann found out that the entropy of equilibrium thermodynamics

could be derived as well from a probability distribution function of the particles of the

considered system. Because their conclusion is regarded to be generally valid today (it

is applied even for non-equilibrium and non-extensive thermodynamics) one may say

that today it is not a conclusion furthermore but has changed to be a definition. So one

assumes oftenly tentatively as an unproven approach that the thermodynamic and the

statistic interpretation are always equivalent despite of many different statistic forms

of entropy in non-extensive-thermodynamics and despite of the further complication

by time-dependent non-linear thermodynamics. According to this interpretation the

temperature is the fit parameter to the distribution and it can loose the link to the

classical empirical thermometer definition.

So this definition of temperature can be applied even if the system is beyond or outside

of equilibrium thermodynamics maybe if the cycle path is not unique or if no potential

exists. For ideal and real equilibrium fluids this alternative approach coincides with

the classical definition in the case of equilibribrium thermodynamics.

If the particle distribution can be determined experimentally, it follows for a thermo-

dynamic situation that the heat exchange may be defined by dQj ≡ TdSj if a statistic

definition of S like Gibbs’ definition of entropy or another like Tsallis entropy is ap-

plied. Then, the temperature T is the fit parameter to the distribution and - as well

in the case of any thermodynamics with caloric measurements - it is the proportional

factor between energy and entropy. So a temperature could be defined even for cases

if the cycle path is not unique or if it cannot be derived from a potential.

If the potential model description is thermodynamically correct and unique then the

cycle can be closed conventionally. In some non-equilibrium cases more entropies and
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temperatures have to be introduced for fitting and closing the cycle. Only then the

thermodynamic approach can close the cycle and maintain the energy conservation.

In the most general case temperatures and entropies loose their original experimen-

tal meaning and have only a formal describing character. So the original definitions

change their meaning and thermodynamics becomes a theory ”for at least everything”.

It can be applied in order to describe systems like spectral distributions in terms of

colour temperatures, macroscopic clusters like star nebulas in terms of a gas of stars.

4.5 Thermodynamics vs. Second Law ?

4.5.1 Second Law Violations in Conservative Fields ?

From the beginning of the development of the theory of thermodynamics there ex-

isted doubts whether Gibbs’ rules of stability are correct if outer potential forces are

applied to a thermodynamic system [28]. The discussion started when Maxwell calcu-

lated erroneously that the temperature changes with the height in a gravity field. He

corrected soon this error and, by applying the kinetic theory of gases, he derived that

the temperature is constant for any equilibrium[29], cf. also equation 4.5.

By this initial error, however, Maxwell woke up Loschmidt who tried to discredit now

the Second Law if potential fields are present [30–33]. The primitive idea (neglecting

internal forces known only after vanderWaals’ PhD 1873[34]) behind the doubts is the

following: If any molecule moves up or down in a potential it losses or gains kinetic

energy. Because the velocity of a particle represents its temperature in the kinetic the-

ory, temperature has to lower if a particle moves to higher potential energies. So the

idea came up that the stratification in atmosphere is not isothermal but isentropic[35].

This idea is applied until today for instance in the popular meteorology to explain

climatic situations known as ”Foehn”, ”Mistral” or ”Scirocco”.

Furthermore, no experimental observations of temperature vs. height so far confirm

Maxwell’s calculation. Better than Maxwell’s barometric pressure equation seems to

be a calculation of an isentropic equilibrium stratification applying the assumption

dS(h) = 0 over the space coordinate h. In dry air v. Dallwitz-Wegner calculates
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∆h = 103 m for ∆T = 1K, the measurement is ∆h = 173 m for ∆T = 1K. [36]

If one checks the isentrope hypothesis of v. Dallwitz-Wegner numerically, one can

estimate the difference to the standard view for standard substances for instance by

looking into a water steam table. The result is, that the effect can be neglected quan-

titatively as long as standard thermodynamic problems are regarded. Only near to

the critical point of a phase diagram such temperature difference problems are impor-

tant as shown by high precision thermodynamic measurements. Then, much effort is

needed to obtain precise isothermal conditions in a volume[37, 38].

If we regard the stratification of the hydrostatic water pressure we find the opposite

gradient dT/dh. The temperature sinks down to 4o Celsius from the surface to the

bottom of the sea. This consideration shows that the primitive kinetic idea of tem-

perature (neglecting the real vdW-interactions) is misleading and does not predict

generally and correctly the temperature stratification of fluids.

Today the stratification and inversion are explained as non-equilibrium phenomena.

Recently Graeff measured a self-organized temperature differences in an strongly iso-

lated dewar volume [39, 40], cf. fig. 4.1. He reports a temperature decrease with

heigth of 7 × 10−2K/m for air and 4 × 10−2K/m for water. Because it is difficult

to calibrate the sensors, he applies a difference method. He measures a dewar in a

turnable drum filled with material isolating the measurement from the environment.

Theoretically he estimates according to the equation (g ≡gravity, Cv ≡ specific heat)

dT

dh
= −∇zT =

g

Cv
(4.36)

This equation 4.36 I rewrite the last equation ( with s ≡entropy density)

T
ds

dT
dT = −ρg dh (4.37)

Graeff calculates for air 9×10−3K/m and for water 2×10−3K/m with height according

this method. In his recent book [41] he avoids the significant difference experiment-

theory for (ideal) air by taking account for the degress of freedom n of the gas. He

replaces Cv by Cv/n. His maximum value estimation is for Xe 3, 11× 10−1K/m. This

estimation explains the values of the ideal gas but it fails for liquid water.
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Figure 4.1: the experimental setup of Graeff, cf. [41]

left: dewar with medium and glass wool; middle and right: rotable drum construction as

housing of the dewar cf. text. all free space was filled by thermically isolating material

More accurate values, however, yields his newest kinetic estimation ansatz by applying

mv2/2 = −m.g.h = kBT in the graviational field. So he obtains (with v =
√

2.g.h)

dT

dh
≈ −1

2
mv2/(hk) (4.38)

This better estimation method yields the correct experimental values for air−0.07K/m

and for water −0.04 K/m.

The formulas remember known effects called entropic forces [42]. Note that the equa-

tion 4.37 is contrary to a thermodynamic equilibrium described by eq. 4.6. If Graeff’s

well documented claims are correct and can be scaled up it would mean that the de-

scribing funtion of the material may be not a potential or does has an optimum under

additional constraints like eq. 4.36 or 4.37.

I compare now Graeff’s result with independent experiments done by P.Fred [43, 44]:

Inspired by the experiments of Shaw [45] he performed an ”inverse” experiment to

Graeff’s work and showed that a thermic flow generates an additive mechanical force

field of the same direction like the thermal flow in the object. So the thermal gradient

can enhance or weaken the gravitational field according to each experimental design,

cf. fig.4.2. Similar observations were done by N. Reiter [46, 47] at Peltier elements.

doubtful after own pilot experiments

Dieter
Pfeil
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Figure 4.2: ”A 1068 gm hollow copper sphere hovers above a 1000 W heat element. The

sphere is attached to a wooden dowel, which in turn is attached to force sensor that is located

above and is housed in a wooden box (not shown). In order to facilitate the upward flow

of heat, three copper hemispheres filled with ice were placed above the sphere. After power

was applied to the heat element for 400 s, the means of the first and last 6 force measures

indicate that the spheres gravitational mass increased by 1.9 % or 20 gm. At the 400-second

point, power was turned off. After 400 s of cooling time, the means of the first and last 6

weight measures indicate that the spheres ‘gravitational mass decreased by 2.0 % or 21 gm.

The graph with the circles depicts the spheres’ weight as a function of time. The graph with

squares depicts the temperature as a function time of the lowest point inside the sphere as

sensed by a thermocouple wire.” from [44]
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The ”inverse” statement can also be read off qualitatively from equation 4.38 because

it holds for the heat flux ≡ Q̇ ∝ dT/dh. Note that the order of magnitude is different.

Interesting would be as well experiments in thermoisolated centrifuges where the ac-

celeration g can be set according to g = r.ω2 (ω ≡ angular velocity, r ≡ radius)[48].

If Graeff’s experiments are confirmed they may support the idea of the ”perpetuum

mobile” centrifuge of von Platen [49] (who invented the adsorption cooling cycle at

Electrolux [50]). I simulated the postulated equilibrium cycle and disproved the sim-

plified idea of the machine [50–52] 1, but if modifying effects have to be added these

constraints can be implemented in the algorithm for a test.

There exist one reference [48] [41] testing Graeff’s claims. This was done also under a

centrifugal field. The coincidence between the references [48] and [41] is weak.

4.5.2 Second Law Violations at Low Pressures ?

Interesting claims violating the second law may exist at a sufficient vacuum where the

continuum approximation of equilibrium thermodynamics fails, cf. eq.4.5. Then, the

mean path length of the particles is higher than the housing vessel dimensions.

Basing on the discussion of his time [36, 53] Holm designed such experiments at low

pressures already in the twenties of the last century [53–56]. Because he estimated that

a selforganized gravitational temperature gradients is too small due to the equilibrating

heat transport in the walls of a metal vessel he built a perpetual (convection ? -

W.D.B) motion system at low pressures above 10−4 Torr with an turnable drum-like

brass housing filled preferentially by a high atomic molecular gas. So he believed to be

able to show a ”gravitomolecular pressure” detected by a small force on the area of a

metal sheet in the volume under isothermal conditions. He supposed that the energy

supply of this force was due to the thermal energy equilibrating the internal gradient

of the brass housing. He did not discuss the transport balances (for mass, momentum,

heat) in space because the relevant theory was developed later [57]. Holm’s setup

1In these cited articles there are some typographic errors:

in [52] equation 5 is dP/dx1 =∞ K(P, T, x1) = 0 . vc on p.60 is defined as a critical value.

In Table 4.3 the missing definition is Zwgr2 ≡Mix1ij .Mix2ij .(xi.xj)
Mix2ij

in [51] equation 34 has to be corrected to K(P, T, x1) = 0 dP/dx1 =∞
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and the experiment is described in [54]. The base pressure in his experiment was

10−4 Torr. One has to take into account that high vacuum technology and surface

science were developed not far at that time. Only with a gas of higher molecular

weight (Dimethylacetonxylose (C11H18O5) )a ”gravimolecular” effect was detectable

for him, cf. [55, 56]. Any effect due to adsorption of gases on the surface of the sensor

plates he tried to annihilate by his experimental procedures.

Sheehan[58][59] treats a low pressure model theoretically by molecular dynamics. He

published about a system consisting of a nonequilibrium steady gas state producing a

permanent force field by asymmetic momentum transfer of the rarified gas atmospere

to a bowl body with surfaces of different dissipative properties at the front and at the

rear side (similar to a Crooke radiometer wheel). Experimentally the astrophysical

assumptions of his model make any experimental testing difficult.

Sheehan discusses as well chemical models basing on surface effects [60][59]. These

models also have no thermodynamic equilibrium state according to his opinion. His

models show that different reacting surfaces (i.e. spatially distributed different fixed

chemical potentials ?) in a volume generate a ”dynamic” equilibrium. It generate

a pressure gradient near to the reacting surface due to the catalytic dissociation of

molecules - or a voltage difference due to different rates of generation or recombination

of the plasma charge. He illustrates these claims by experiments with the dissociation

of hydrogen plasmas in a black cavity as a single heat bath. This delivers a permanent

current due to different electron emission at different metal electrodes according to the

Richardson formula. This generates a pressure difference.

Sheehan does not prove non-conservativeness. Pressure gradients can be equilibrium

states in fields. Stored chemical potentials of the used materials may explain these

effects also as very small (and therefore long lasting) battery effects, cf. also [61] [62].

4.5.3 Nonconservative Systems beyond the Second Law

Quite clear is the situation for systems with time dependent vortex fields. They are

beyond the potential formalism of classical equilibrium thermodynamics and can show

features of a perpetuum mobile-like behaviour. In terms of non-equilibrium thermody-

namics they may be explained also by a permanent stationary influx or a force which
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Figure 4.3: ”A fragment of the system of 1080 series-connected asymmetric aluminum rings

with the same diameter 2r ≈ 2 µm. The sign of the potential difference Vp and the electric

field E = −∇.Vp direction depend on the Ip direction in the narrow half-ring wn ≈ 0.3µm,

having higher resistance Rn > Rw. In the wide half-ring ww ≈ 0.4µm the persistent current

flows against the electric field E = −∇.Vp ” from [63]

is compensated by a permanent disspative efflux or a permanent force from outside.

Very ”modern” systems of this type are published by Gurtovoi, Dubobos et al. [63–73]:

They investigate experimentally supraconducting rings in a stationary magnetic field.

The magnetic field destroys the uncorrelated noise movement of the electrons and en-

forces them to move on a cyclic path. The system is set thermally to the phase border

of supraconductivity. So the supraconductivity is switched on and off in one half of the

rings , cf. also section 6.4.2. This is done by thermal noise. The switching does not cost

energy because superconductivity is a phase transition of first order. So the system

couples alternately to a quantum and a thermal bath of fluctuations. This generates
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a mean voltage difference which can be observed at the resistive non-supraconducting

part of the ring. Most articles about the theme are peer-reviewed today, cf [73].

The systems are initiated and explained theoretically by Nikulov [74–78]. Experimen-

tally they are quite complicated to engineer and are not efficient in energy, however

they have a theoretical perpective which perhaps can be generalized and transferred.

4.5.4 Further Candidate Systems

The book of Capek and Sheehan[59] and the conference proceedings of the ”Quantum

Limits of the Second Law”, San Diego 2002, cf. [39], summarize the modern theo-

retical and experimental candidate model systems. The mathematics of these second

law violating systems includes typically non-conservativeness, non-continuum thermo-

dynamics, vortex fields, quantum effects and nonlinear dynamics. For these systems

Second Law compatibility is not well tested and not sure at all. So far quite all systems

are still difficult to realize, at low efficiency and far off from any economic application.

4.6 Conclusions

In this chapter I derived the equilibrium thermodynamics in fields and its statistical

distribution by a Hamiltonian variational method which may be new in thermostatis-

tics. This was done in order to refer to some critical objections to the Second Law

based on equilibrium thermodynamics in fields theoretically and experimentally. It

was not possible for me to find second law violating contradictions theoretically if the

claimed effects are explained by the standard equilibrium thermodynamics. However,

leaving the basic conditions of the equilibrium thermodynamics, there exist systems

which violate the second law. So I can conclude:

The classical Second Law stems from classical thermodynamics and implies some im-

plicit not mentioned hidden assumptions. If we drop them by the appropriate choice

of preconditions the development of Second Law violating systems may be possible.
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4.7 Appendix-Calculating the Fluid Stratification

I solve numerically the stratification of a gaseous mixture near to the critical point.

So I describe first the subelements which are used below to build up the algorithm.

4.7.1 the Equation of State

The Bender equation of state [79] is applied for the computation of thermodynamic

state of the mixture in the field. The equation has the form

Pv

RT
= 1+δΞ(1)+δ2Ξ(2)+δ3Ξ(3)+δ4Ξ(4)+δ5Ξ(5)+δ2 exp(−δ2)[Ξ(6)+δ2Ξ(7)] (4.39)

The abbrevations δ and Ξ(j) have the following meaning

δ ≡ vc/v,

Ξ(1) ≡ e1 − e2τ − e3τ
2 − e4τ

3 − e5τ
4,

Ξ(2) ≡ e6 + e7τ + e8τ
2,

Ξ(3) ≡ e9 + e10τ,

Ξ(4) ≡ e11 + e12τ, (4.40)

Ξ(5) ≡ e13τ,

Ξ(6) ≡ e14τ
3 + e15τ

4 + e16τ
5,

Ξ(7) ≡ e17τ
3 + e18τ

4 + e19τ
5

The subscript c denotes values at the critical point, τ is defined by τ ≡ Tc/T , and the

ej by ej ≡ g4,j + g1,jω+ g2,jχ+ g3,jωχ+ g5,jχ
2. The g-coefficients are tabulated in [80],

ω (the acentric factor) and χ (the Stiel polar factor) are taken from [81].

In the generalized Bender equation of state eq.4.39 and 4.40 the critical values vc and

Tc of the mixture appear which we will mark by an additional index M as vcM , TcM .

Also the material constants ω and χ belong to the mixture and will be denoted as

ωM and χM . The values of these four quantities are calculated by the pseudo-critical

mixture rule of Tsai and Shuy [82] in a version of Platzer [80]: Characterizing the
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components of the mixture by indices i,j , ... we have

vcM =
∑
ij

xixjvcij with vcij ≡
1

8
[v

1/3
ci + v

1/3
cj ]3ζij

TcM = v−ηcM
∑
ij

xixj

√
TciTcj(vcivcj)ηkij (4.41)

ωM =
∑
i

xiωi, χM =
∑
i

xiχi.

Here the constants η, kij and ζij are fitting parameters. The material data of the pure

components were taken from [80, 81, 83], where more constitutive data can be found.

4.7.2 the Phase Equilibrium

In order to calculate the phase equilibrium we have to solve Gibbs’ equilibrium con-

ditions. The first equation bases on equal pressures in vapour(index g) and liquid(f )

P (T, vg, x1
g) = P (T, vf , x1

f ). (4.42)

The other equations base on equal chemical potentials or fugacities in vapour and

liquid valid for each component. In our case we use the definition of fugacity

fi ≡ xiPϕi = f(T, v, x1), (i, j = 1, 2; i 6= j). (4.43)

Here the fugacity coefficients are calculated according to a formula derived in [84]

lnϕi = ZM − 1− lnZM +
1

RT

∫ ∞
v

(
P − RT

v

)
dv

− 1

RT

∫ ∞
v

n∑
i 6=j,j=1

(
∂P

∂xj

)
T,v,xl

xjdv, (4.44)

using the abbreviation ZM ≡ Pv
RT
. Because xf1 and T are fixed variables (therefore they

are dropped down) and vf , vg, and xg1 are wanted we get the equation system ∆P (vf , vg, xg1)

∆f1(vf , vg, xg1)

∆f2(vf , vg, xg1)

 ≡
 P (vf )− P (vg, xg1)

f1(vf )− f1(vg, xg1)

f2(vf )− f2(vg, 1− xg1)

 = ~0 (4.45)
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which is solved by using a Gauss-Newton or Newton-Raphson algorithm.

After having solved this problem numerically all thermodynamic quantities can be

derived. [52] contains more details of the used program routine. The relevant formulas

necessary for the iteration and the derivation of all relevant thermodynamic quantities

can be found there as well. In our program the calculating subroutine is called EOS .

4.7.3 Inverting the Equation of State

The Bender equation of state is formulated analytically in the form P (v, T, xi, ...xn−1)

with v, T and xi as independent variables. (n is the number of components). However,

for our calculation purposes below the equation of state (EOS) should be dependent

from other variables.

So, in some situations we have to know the thermodynamical state dependent from

P0, T and xi. This inversion can be done numerically by solving the equation for v

P0 − P (v) = 0 (4.46)

by a Newton algorithm. P0 is the given pressure, P (v) is the Bender EOS in depen-

dence of v which is iterated until the accuracy of 4.46 is sufficient. The variables T and

xi are constant during the iteration. Our corresponding subroutine is called V PTX .

In order to calculate the equation of state in the different spatial compartments we

have to be able to solve also the set of constitutive equations dependent from P and

µi. The numerical solution of this problem is done if the system of equations

P0 − P (v, T, xi) = 0

µ1
0 − µ1(v, T, xi) = 0

............ = 0 (i = 1, 2, ...., n− 1) (4.47)

µn
0 − µn(v, T, xi) = 0

is solved by a Newton-Raphson iteration procedure. P0 is the given pressure, µi
0 are

the given chemical potentials, P (v, T, xi) and µi(v, T, xi) are the calculated values from

the Bender equation in dependence of the wanted values of v, T and xi which all are

iterated until the accuracy is sufficient. This subroutine is called VTX PMu .
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Figure 4.4: Calculating the volume array of the fluid, cf. text of section 4.7.4

4.7.4 Spatial Distribution of Pressure and Chemical Potential

We calculate here the pressures and the chemical potentials in the volume if a known

field from outside is applied . Our calculation is only one-dimensional. For calculation

the whole volume is divided into a array of m compartment ∆V (rj) = ∆rj ∗ Aj of

specific volume vi and molar mass Mi at the space coordinate rj at the field accel-

eration g(rj) in the potential U(rj). Then, if we know the pressure P (rref ) and the

concentration xi
ref in one compartment at rref , we can calculate the pressure and the

chemical potential of all other compartments subsequently by

P (rj) = P (rj−1) +
g(rj−1)

v(rj−1)

∑
i=1

n
Mi.xi(rj−1)∆r

µi(rj) = µi(rj−1) +Mi(U(rj−1)− U(rj)) (4.48)

For programming the formula µi = µi0(p+, T ) + RTln(fi/p
+) + Mi.U(r) has to be

applied, cf. [84]. In our code the corresponding subroutine is called VOLUME.

If the thermodynamic state of the reference compartment is given this routine cal-

culates the full state of all other compartments of the total volume (cf. fig.4.4) by

applying the subroutines from sec.4.7.3.
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4.7.5 the Mass Conservation

The total particle number is conserved, therefore the whole volume array in the field

is subjected to the constraints

Ni
0 =

∑n

j=1
Ni(j) = consti. (4.49)

As shown above the total particle numbers Ni in the volume can be calculated in each

compartment by the subroutine VTX PMu if no field is applied. If a field is applied

mass conservation is achieved by finding the appropriate starting values for P (rref )

and xi
ref . Therefore the following system of equations has to be solved by help of the

subroutine VOLUME

Ni
0 −Ni(Pref , x

ref
i ) = Ni −

∑m−1

j=1

xi(rj)A(rj)

v(rj)
∆r (4.50)

Although we do not know the function Ni
0−Ni(Pref , x

ref
i ) explicitely we can approx-

imate numerically its Jacobi matrix by calculating the difference quotients stepwise

from the solving Newton-Raphson iteration procedure. This allows to solve for Pref

and xrefi The corresponding subroutine is called N PX .
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4.7.6 Synthesizing the whole Compartment Solver

The algorithm determing the state of the volume in the field proceeds as follows :

• Define the number M of volume array cells, initialize Ni = 0

• Give temperature T0 and mean concentrations xi
0

• Sum up the particle number Ni(0) of each species

• Calculate the full thermodynamic state at no field using EOS

• Choose the angular velocity and calculate the centrifugal field at each r

• Choose the arbitrary reference volume at rref

• Estimate Pref and xi
ref at rref

• ITERATE N PX i.e. (Ni(0)−Ni)→ 0

– Determine the full state at Pref and xrefi using V PX and EOS

– Determine full thermodynamic state at each rj using VOLUME

– Determine the number of particles ∆Ni(rj) of each sort i in the subvolume

∆V (rj) from VOLUME

– Calculate Ni := Ni + ∆Ni(rj) adding up the particle numbers of the whole

compartment

• CONTINUE IF Pref and xrefi is not accurate enough for (Ni(0)−Ni) < ε

• Give out all calculated values !
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Figure 4.5: Phase diagrams of the mixture Ar − CH4 at 170oK

Upper diagram : pressure vs. molar ratio of Argon.

Lower diagram: spec. volume vs. molar ratio of Argon

4.7.7 Results

I used the mixture Argon-Methan at 177oC as numeric lab rat in order to test the

algorithm. First, I calculated the fit constants (result k12 = .9977865068023702, χ12 =

1.033181352446963, ηM = 2.546215505163194) to the data using the least square rou-

tine described in [52] and in [85] . With these model data I calculated the rotator cycle

shown in fig.4.6. The starting state was a mixture with a molar ratio of Argon of 56

%, 55 bar and 170 K . This is near to the critical point K in the gaseous area of the

phase diagram,cf. fig.4.5. The vessel is assumed to extend from a radius of 20cm to

30cm. The cross section of the vessel is set to be the same at each radius. If the vessel
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Figure 4.6: the kinetic rotation cycle in a centrifuge (ω ≡ angular velocity)

a) initial state b) after acceleration c) separation d) after deceleration e) mixing

volume is under rotation at 4000 RPM the total volume is split unsymmetrically into

two halves by a tap. The split point is chosen arbitrarily where the specific volume

in the field equals about the specific volume without field. Then, both volumes are

decelerated again to the field free situation. Fig. 4.7 - Fig. 4.9 shows the pressure,

concentration and specific molar volume profiles vs. radius in the centrifugal field of

the vessel each during acceleration(upper diagram) and deceleration(lower diagram).

Fig.4.6 shows the integrated work diagram of the cycle accelation - volume splitting

by tap - deceleration calculated from the diagrams 4.7 - Fig. 4.9 A tabel calculation

program performs the numeric integration of the mass distributed in the volume array.

Note that the profiles depend on the shape of the vessel due to the mass conservation

(not shown here explicitely by numeric examples!).

Our calculation of the isothermal cycle indicates a mechanical energy loss and therefore

an entropic dissipation. This can be seen if one analyzes the oriention of the rotation

work diagram, where Wrot is defined as

Wrot =

∫
Tdϕ =

∫
L̇ ω dt =

∫
ωdL (4.51)

Fig. 4.10 shows the calculated work area with an orientation of an entropic loss.
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Figure 4.7: the kinetic rotation cycle of the centrifuge , Pressure P vs. radius r

Figure 4.8: the kinetic rotation cycle of the centrifuge, spec. volume v vs. r



46 CHAPTER 4. THERMODYNAMICS AT THE LIMIT

Figure 4.9: the kinetic rotation cycle of the centrifuge, molar ratio x vs. radius r

Figure 4.10: the total kinetic rotation work area of the cycle of the centrifuge.



Chapter 5

No Second Law in

Thermodynamics ?

5.1 Historical Introduction

The Hungarian engineer Arnold Irinyi had the idea to enhance the efficiencies of steam

engines by vapor mixtures. In 1928 he used a mixed vapor of water-benzene as fluid in

ordinary steam engines [86]. It was confirmed by independent referies that his machine

had an efficieny significantly higher than the conventional water steam engines. Irinyi

himself claimed that efficiencies are possible higher than predicted by Carnot. Rudolf

Doczekal from Vienna overtook the idea and analysed the thermodynamic processes

of the fluid mixture in experiment and in theory as far it was possible to him [87].

He identified a so named ”dual effect”. This meant that he observed condensation of

fluid during expansion and compression. He stated that labile effects are responsible

47
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for these effects. His steam engine is documented in a patent [88]. He claimed to have

obtained an efficiency higher than allowed by Carnot. His steam engine could run at

reduced power even if the condensor was switched off [89]. With the death of Rudolf

Doczekal in 1944 this research finished. However the memory in this machine project

was carried over in our time by Alois Urach, a non-expert [90] who was acquainted over

his life with the Austrian underground outsider scene of alternative science. He rescued

the unpublished scientific papers and drafts after the death of Doczekal and distributed

copies of them. One of his ”clients”, the German journalist Gottfried Hielscher revived

the memory in this scientific work in his book ”Energie im Überfluss” in 1981 [50].

So many people in the German speaking Europe were informed about this science.

And before Urach died around 1990 Bernhard Schaeffer from Berlin succeeded to get

copies of Doczekal’s scientific bequest from Alois Urach’s library. At this time Schaeffer

had a professional workshop. Additionally he was the official head of the ”Werkstatt

für dezentrale Energieforschung”, a little association in Berlin interested in green and

alternative science. The author himself was a member of this association and so he

could get some of the hidden information from Doczekals’s bequest reported in this

chapter here. Schaeffer succeeded to get money for an evaluating research and -with

the help of his studying sons Jörg (hardware) and Kai (software) - he built an test

apparatus to observe the thermodynamic effects of this vapor mixture. This was a

boiler for water-benzene connected to a cylinder with piston including sensors for fast

measurements of pressure and temperature plus computer control and readout. Later

an optical observation of the steam was added. The first results were very encouraging.

Although they were quite irregular and not very reproducible some of them showed a

tremendous gain of this cycle. A patent was filed [91], an article was written [92]. Due

to this ”success” a big party was organized on a ship where this success was celebrated.

Some weeks later the mood changed into the depressive. It seemed that the sensor that

was affected by the water-benzene mixture. Some changes at the sensors let disappear

the huge effect. From my memory the curves after this changes were as expected from

conventional thermodynamics and showed a small loss at the first sight. The matter

was regarded like a flop and the spread-out of the article was stopped. Schaeffers

interests changed and he tried to get help from Prof. Albert Serogodsky from Russia

who claimed to have measured similar labile effects with high pressure systems either

liquid water below 4◦C or nitrogen-butane at about 100◦C [93] . Therefore, for some
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years the water-benzene project slept. In 2005 the author heard that Schaeffer must

have followed the theme and claimed now to have rebuilt successfully a little Irinyi

labile state steam engine with over Carnot efficiency. Schaeffer claimed now to have

measured an efficiency of about 60% driven by a temperature difference from 180◦C

or 160◦C to 80◦C. He claimed to have confirmed Doczekal’s observations with vapor

mixtures. With Gelia Lerche he founded the LESA-Gmbh [94], a company in Berlin

with the mission, to produce and to sell the electricity and/or the power plants.

Therefore the author decided to evaluate these claims theoretically, first by equilibrium

thermodynamics and later by non-equilibrium thermodynamics in order to evaluate

the system. The new developed theoretical methods and results are presented here.

5.2 The Work of Irinyi, Doczekal and Schaeffer

5.2.1 Irinyi

Irinyi worked at the Deutsche Institut für Energieforschung in Hamburg. He built a

test steam engine which could be driven either by steam of water or by a mixed steam

of water-benzene. He held patents in Germany and Austria [95][96]. The principal

simple setup and a photo of the machine is shown in fig.5.1 . It was a two cylinder

engine constructed for pressures of 10-12 atü typical and 45 PS power at 260 rpm.

The heat was feeded into the machine cycle by pressured water (6 atü) as medium

over a heat exchanger-boiler S (cf. fig.5.1). Therein the liquid medium (water or water

/ benzene) was evaporated. The mechanical work was produced in the machine M,

the remaining steam was condensed in the condenser C . The condensed liquid was

pressed back into the boiler S by a pump Sp. For the calculation the authors define

the energy fluxes Qi of the fluid cyle. The location of the heat fluxes Qi in the cycle

are found in the left diagram of fig.5.1. The following balances can be read off:
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Figure 5.1: Irinyi’s steam engine (from[96])

M machine, C condensor, Sp pump for liquid, S heat exchanger boiler, P boiler, K pump for

heat transporting pressured water, Qi -arrows indicate energy fluxes

Q1 = Q5 −Q2

Q3 = Q4 −Q2 (5.1)

Q5 = Q6 −Q4

The relevant exchanged energy fluxes are:

Q1: input heat flux supplied at the heat exchanger measured by temperature difference

between water inflow and outflow; the water flux is measured by a flow meter;

Q3: mechanical power output measured by a generator;

Q5: heat loss flux at the condensor measured similar like Q1;

The performance of the machine was checked by five independent referies [86]. R.

Meyer measured the ratio Q3/Q1. He observed that approximately that the half of

the heat was needed for the same mechanical work output if the changed the fluid from

pure water steam to water/benzene mixed steam. More exact are the experiments by

W. Ketterer. His results can be found in tabel 5.1 and confirm R. Meyer’s report.
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Table 5.1: The measurement of Irinyi’s steam engine according to W. Ketterer[86]

Water Water-Benzene

work Q3 5160 17440

heat input Q1 75090 109940

heat loss Q5 86350 132700

experimental efficiency Q3/Q1 6.86 % 15.85 %

highest temperature T2 208.8 C 176.2 C

lowest temperature T1 85.8 C 54.0 C

theoretical Carnot efficiency (T2 − T1)/T2 43,3 % 27,2 %

From this data one can read off also that the machine performance was less than the

Carnot efficiency for water and for the mixed steam. However, the order of magnitude

of the measured efficiency of the mixed steam is similar if compared with predictions for

conventional ORC-cycle machines today [97]. Irinyi however claims that over-Carnot

efficiency can be achieved. This claim may base on his diagrams shown in fig. 5.2 and

fig. 5.3. Because the experimental origin is unclear and and its explanation was not

found I do not discuss it in detail.

Figure 5.2: Irinyi’s diagram of mixed vapour steam (from[96])
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Figure 5.3: Irinyi’s enthalpy (J) - temperature(t) diagram (from[96])

In Irinyi’s booklet [86] the referie Lothar Grosse calculates a (Rankine) cycle between

T = 170◦C and T = 30◦C with water benzene as fluid.

His result shows in deed an over-Carnot efficiency.

However, it has to be doubted that the underlying assumptions of the calculation are

correct. For Grosse does not notice that he assumes implicitely that the mixed steam

has to be always in the saturated and azeotropic state. Later this wrong assumption

was overtaken by Schaeffer [98]. In both cases the real equilibrium phase diagram

water benzene is not accounted for. The phase diagram suggest also unsaturated or

partly saturated states of the mixed steam. We will see below that a corrected quasi-

equilibrium calculation includes these states. My own rough equilibrium calculation

of the cycle confirms the large efficiency as claimed by Irinyi. From Irinyi’s booklet it

is not clear whether a over-Carnot efficiency was measured in his institute in deed or

whether the claims are only predictions based on unfounded assumptions.
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5.2.2 Doczekal

Rudolf Doczekal in Vienna overtook the scientific heritage of Irinyi and investigated

the theme with the modern methods of his time. He tested out also other water-

hydrocarbon mixtures. He discovered that the mixed steam was a non-equilibrium

system and investigated this aspect in more detail. So he built up the following

test apparatus for the measurement of P-V -diagrams[89]: ”You see in fig. 5.4 the

experimental setup consisting of a cylinder, an evaporator and a pressure bomb in

order to produce the counter pressure. The cylinder walls were heated up electrically

in order to reduce heat exchange between the dual-vapor and the walls”.

Figure 5.4: Doczekal’s working bench for measuring P-V -diagram of mixture vapors [50]

left side in the photo: the electro boiler wrapped in isolation material and working as vapor

evaporator of the liquid mixture; middle: the horizontal cylinder tube which contains a

invisible plunger inside. The cylinder can be pressurized from both sides as plungers in old

steam engines. One side of the cylinder is loaded by the vapor mixture produced in the

boiler, the other side of the cylinder is loaded by the bomb of pressured air standing in the

background at the right side. The cylinder can be heated may be by some heating coils

wrapped around its circumference. The volume is measured by the length of the long thin

moveable rod pointing out to the right side at the right end of the cylinder.
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Doczekal calculated also theoretically these curves with methods available.

The data taken by this setup are shown in fig. 5.5. Doczekal writes: ”In fig.5.5

you see the calculated p-v diagram with the calculated adiabatic exponents. The

adiabatic coefficient is one for the isotherm. For the dual vapour the exponents change

with temperature. The coefficients are below 1 for most values. Furthermore you see

two diagrams which coincide with the calculated prediction for most values. The

temperature was measured by a thermocouple fixed to the plunger in the cylinder. It

was interesting to observe what happened if the plunger went back. Without any

Figure 5.5: Doczekal’s results with mixture vapor measured with the previous setup [89]

The upper two diagrams represent theoretical calculated values .

Lower row left diagram: expansion and recompression at a initial expansion factor of V=7.

The starting temperature is 164◦C recalculated by a saturated pressure equation.

Lower row right diagrams: expansion and recompression at a initial expansion factor of

V=5.6 . The starting temperature is 173, 6◦C calculated by a saturated pressure equation.

Probably there happened an error in the drawing of the temperature-volume diagram. The

theory starting value shows a mismatch in temperature of ≈10 degree too low, cf. fig. 5.21.
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remarkable change of the pressure the plunger jumped back to half of the full expansion

volume - a strong argument that half-labile states were responsible for the effect.”

Because these test measurement were promising ”...I decided to build a test machine

in order to be able to confirm a high efficiency. The photo and the scheme of the

apparatus you see in fig. 5.6. In an electric boiler dual vapor is generated which

feeds a reconstructed FIAT four cylinder motor working as a steam motor. The first

cylinder worked as a high pressure cylinder, two parallel connected cylinders worked as

low pressure cylinders and the last cylinder worked as a compressor. It had to compress

the vapor again to the pressure of the boiler. It was shown that this was possible. But

in order to avoid water strokes a pump was installed between the compressor and the

boiler. In order to start the machine a condensor was implemented. It is clear that

the machine could not work if the condensor was switched off. In deed the machine

stopped immediately if it was filled only with water as working fluid. The things were

different if dual steam was used. If the condensor was switched off and at relatively

low pressures (≈ 1 - 5 bar estimated WDB) the engine run in deed.

Figure 5.6: Doczekal’s steam engine

left side: photo of the setup (from [50]);

right insert: Sceme of Doczekal’s patented dual vapor cycle machine (from [88])

M3 expansion cylinder, M1 compression cylinder’ B separator and condensor of liquid and

gas, R valve, UE overpressure valve, P3 pump
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Figure 5.7: typical double working diagram of Doczekal’s steam engine (from [89])

interpretation: the expansion of the first loop may refer to the first expansion, then the

steam is pressed into the double expansion cylinder and is recompressed. Note that the first

loop has a gain and the second loop a loss orientation

This proved that the predicting calculations were correct.”

A typical pressure diagram of this setup in the normal state is shown in fig. 5.7.

Doczekal built also a demonstration apparatus in order to make visible qualitatively

the labile effects standing behind his measurements. He writes [87]: ” In order to make

visible what happens in a dual vapor the apparatus in fig. 5.8 was used. If pressured

air is applied to the mercury in the vessel the mercury can be pressed into the glass

column. In this column the liquid under investigation is filled in above the mercury.

After the air is removed the glass is screwed off and the liquid is heated to the wanted

temperature by the radiation heaters around the column from outside. In order to

avoid any condensation in the tube not only the mercury is heated in the upper part

but also the space between the glass and the protecting tube is heated by a copper coil

filled with flowing hot water. This is done by a thermostat which sets the temperature

also in the vessel with mercury”.

The observed mixture was water-gasoline (Octane number 43). Probably this mixture

was chosen in order to protect the glass tube. Gasoline is apolar and has a similar

phase diagram like benzene but it exerts less pressure at the same temperature.
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Figure 5.8: Doczekal’s demonstration experiment for labile states in mixtures (from [87])

translations: Druckluft=pressured air, Entlüftung= gas outlet, Quecksiberbehälter= mer-

cury reservoir, Raumtemperatur= room temperature, Strahlungsheizung= radiation heater,

Warmwasser-Durchlauf=hot water flow.
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Doczekal writes about the experiments, cf. fig.5.9: ”By lowering the mercury column

the whole liquid can be evaporated in the glass tube. If the pressure is enhanced

slightly by rising the mercury column from II to III a significant amount of turpid

liquid appears. If the mercury column is lowered again liquid critical phases are

generated which change into anisotropic liquid if the pressure is changed only a little

bit. If it is expanded from I to II oscillations of mercury appear at constant pressure of

the air, see fig IIa. Very strong oscillation appear if the mercury is lifted from position

II to I. These oscillations represent the labile state, they have a high pressure at a

large volume or a low pressure at a small volume. These meta-stabile or labile phases

are the cause for the big difference between the expansion and compression curves.”

The measurement values are shown in fig.5.10. In today language this means that

Doczekal claimed to have observed nonlinear oscillations. Of course the measurements

of Doczekal arise many questions regarding his technical abilities which can not be

answered due to the loss of information after a delay of more than 70 years.

5.2.3 Schaeffer

Schaeffer at LESA rebuilt Irinyi’s and Doczekal’s steam engine with the actual modern

technology. Some strategies of their improvement of the machine design are obvious:

1.) They use pistons with a high compression factor. This is necessary in order to

enable a good removal of the condensed liquid after a cycle.

2.) They detect electronically the pressure in each piston by fast sensors.

3.) They use magnet valves. This enables a fast precise steering of the valves in a feed-

back loop by a computer and allows to optimize the cycles by charging or discharging

the pistons in the right moment.

4.) The construction should be strong enough for higher pressures and chemicals in

order to allow the testing of mixtures working similarly at environment temperatures.
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Figure 5.9: Doczekal’s demo experiment for labile states (from [87])

left picture: water-gasoline in glass tube before expansion in the stationary state

right picture: same after expansion - observation of pressure oscillations

translations: Dualdampf=dual vapor, Benzin= benzene, Heizung=heating, Wasser=water

Zeit=time p = pressure, Trübung = opacity

Figure 5.10: Doczekal’s dual adiabatic cycle experiment with water-gasoline (from [87])

pressure (p)- volume (v) - diagram and tabel of measurements of the cycle

-----------
gasoline
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5.3 The Thermodynamic Theory of Water-Benzene

5.3.1 stabile case

The material description

It is known that the mixture water-benzene represents a limit case of an azeotropic

mixture[84], cf. also fig 5.11. The gas mixes ideally meaning that the ideal pressures

of each gas add up to the total pressure of the mixture. In the liquid state the polar-

apolar liquid mixture demixes quite completely into two liquid phases in the region of

the state space below 450◦K. For a desciption by a semiquantitative model I use an

approach called by me ”Mollier approximation” because some of the basic simplifica-

tions of the model are overtaken from the theory of wet air by Mollier.

It is assumed for simplification that

1) both gases of the mixture are ideally

2) the liquids demix completely

3) the liquid volumes are constant for all temperatures

4) the specific heats of the vapor Cp are ideal and dependent from temperature only.

5) the enthalpies at the phase border lines can be approximated by an interpolation

of second order dependent from temperature, vgl. tab.5.2.

6) For the equilibrium calculation holds: on the left side of the phase diagram (relative

to the azeotropic line, cf. fig. 5.11) the water corresponds to the liquid, the benzene

to the air, on the right side the roles are interchanged.

Applying these approximations the phase border lines of water and benzene vs. tem-

perature in ◦C are calculated. Differently and more accurately as Mollier’s first order

calculation we use a polynom of second order as fit for the enthalpy values at the phase

boundary. The enthalpy values are from [99] and [100] . By adding a constant they

are shifted so that the zero value point for the enthalpy of each liquid is at 273.15◦K

or 0◦C. This is justified because the processes considered here are purely physical pro-

cesses and contain no chemical reactions. If the heat capacitances of the gaseous state

are interesting the ideal heat capacity Cp0 of the vapors are calculated applying the

approximation formulas with the tabulated material coefficients.

*) the terminus "azeotropic"  in this book is overtaken from the original literature. 
   This was done erronneously.
   Here we have always a saturated vapour pressure line of a 2-component 
   mixture consisting  of  3 phases.
   This contradicts to azeotropic points and lines which are 2-component 
   systems changing from a 2- to a 1-phase system .

*)
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Figure 5.11: the P-x phase diagram of benzene-water

black line shows the line of the azeotropic points; the liquid state is above horizontal lines,

two-phase area are between lines of same color, gaseous state below lines of same color.

Arrows denote the path of an idealized equilibrium Doczekal’s cycle, cf. text
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Table 5.2: the applied material data and formulas for Water and Benzene

Water

Molwt 18.015

Tc / (K) 647.2

Pc/(Pa) 221.2 ∗ 105

r(W/B)/(kJ.kg
−1) 2483.75 at 273.15K

Psat log(Psat/Pc) = (1− Tr)−1 ×
(V p1 ∗ Tr + V p2 ∗ T 1.5

r + V p3 ∗ T 3
r + V p4 ∗ T 5

r )

with Tr = 1− T/Tc
with V p1 = −7.76451; V p2 = 1.45838

V p3 = −2.7758; V p4 = −1.23303

enthalpy h/(kJ.kg−1) h = ko + k1T + k2T
2 boiling line

with T/(C) and k0 = 0; k1 = 4.0533; k2 = .0008698

enthalpy h/(kJ.kg−1) h = ko + k1T + k2T
2 dew line

with T/(C) and k0 = rW ; k1 = 2.2206 ; k2 = .0034201

specific ideal heat of gas

per mass in (J/(g ∗K)) Cpo = (((E ∗ T −D) ∗ T + C) ∗ T −B) ∗ T + A

with A = 1.9408; B = −9.6766 ∗ 10−4

and C = 3.0885 ∗ 10−6;D = −2.6314 ∗ 10−9

and E = 8.6095 ∗ 10−13

per mol in (J/(mol ∗K)) Cpo = A+BT + CT 2 +DT 3

with A = 32.24; B = 1.924 ∗ 10−3;

and C = 1.055 ∗ 10−5; D = −3.596 ∗ 10−9

surface tension σ/(Nm−1) σ = 235.8 ∗ 10−3 ∗ T 1.256
r ∗ (1− 0.625 ∗ Tr)

heat conductivity /(W/(m*K)) λ = (A+BT + CT 2 +DT 3)(1 + pi/(bar) %)

with A = 7.341 ∗ 10−3; B = −1.013 ∗ 10−5

and C = 1.801 ∗ 10−7; D = −9.1 ∗ 10−11
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Benzene References

78.108 [81]

562.2 [81]

48.9 ∗ 105 [81]

438.7 at 273.15K [81]

log(Psat/Pc) = (1− Tr)−1 ×
(V p1 ∗ Tr + V p2 ∗ T 1.5

r + V p3 ∗ T 3
r + V p4 ∗ T 5

r ) [81]

with Tr = 1− T/Tc
V p1 = −6.98273; V p2 = 1.33213

V p3 = −2.62863; V p4 = −3.33399 [81]

h = ko + k1T + k2T
2 boiling line fitted from data of

k0 = 0; k1 = 1.3966; k2 = 0.002681[99] [100]

h = ko + k1T + k2T
2 dew line fitted from data of

k0 = rB ; k1 = 1.0141 ; k2 = 0.0010733 [99][100]

Cpo = (((E ∗ T −D) ∗ T + C) ∗ T −B) ∗ T + A [83]

A = −0.4781755; B = 6.186488 ∗ 10−3

C = −3.803634 ∗ 10−6;D = 6.996479 ∗ 10−10

E = 4.266088 ∗ 10−14

Cpo = A+BT + CT 2 +DT 3 [81]

A = −33.92; B = 0.4739;

C = −3.017 ∗ 10−4; D = 7.13 ∗ 10−8

σ = 70.969 ∗ 10−3 ∗ T (11/9)
r [100][101]

λ = (A+BT + CT 2 +DT 3)(1 + pi/(bar) %) [81]

A = −8.455 ∗ 10−3; B = 3.618 ∗ 10−5

C = 9.799 ∗ 10−8; D = −4.058 ∗ 10−11
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If the heat capacitances of the gaseous state are needed the ideal heat capacity Cp0 of

each vapor are calculated from approximation formulas[81].

For the surface tension γ (in N/m) of water the following formula is taken from [100]

γ = 235.8 ∗ 10−3 ∗ T 1.256
r ∗ (1− 0.625 ∗ Tr) (5.2)

with T temperature, Tc critical temperature and the reduced temperature Tr defined

as Tr ≡ 1 − T/Tc. For the calculation of surface tension γ (in N/m) of benzene the

following approximation [101] is applied

γ = 70.969 ∗ 10−3 ∗ T (11/9)
r (5.3)

The proportional fit constant 70.969 ∗ 10−3 has been obtained from a fit to 3 exper-

imental values taken from a tabel of [81] p.634. The temperature dependent heat

conductivity value λ (in Watt/(meter*.Kelvin) ) of each liquid substance at 1 bar is

calculated according to a polynomial approach [81] p.515

λ = A+BT + CT 2 +DT 3 (5.4)

The material constants A,B,C, and D are from [81] p.548 . In the program calculations

the heat conductivities are corrected for pressure by multiplying a factor (1+P/bar%)

in order to take into account for the approximative pressure dependence of these sub-

stances, see [81] p.514. The heat conductivity of the binary gas mixture are obtained

from the estimation methods of Wassilewa, Mason and Saxena, Ray and Thodos de-

scribed all explicitely in [81], p. 498 to p.531.

So the approximative value of the heat conductivity λ of a gas binary mixture (with
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x ≡ molar ratio) is obtained by the following program code lines:

ΓW = 210 ∗ (TcW ∗M3
W/P

4
cW )(1/6); % index W ≡ water

ΓB = 210 ∗ (TcB ∗M3
B/P

4
cB)(1/6); % index B ≡ benzene

λWB =
ΓB(exp(.0464 ∗ TrW )− exp(−.2412 ∗ TrW ))

ΓW (exp(.0464 ∗ TrB)− exp(−.2412 ∗ TrB))
;

λBW = 1/λWB;

A12 = (1 + λ
(1/2)
WB ∗ (MW/MB)(1/4))

2
/(8 ∗ (1 +MW/MB)(1/2));

A21 = (1 + λ
(1/2)
BW ∗ (MB/MW )(1/4))

2
/(8 ∗ (1 +MB/MW )(1/2));

W1 = x ∗ A12 + (1− x);

W2 = x+ (1− x) ∗ A21;

λ = (x ∗ λW )/W1 + ((1− x) ∗ λB)/W2;

the equilibrium calculation

Due to the basic ideal assumptions in the description of the mixture (see sec 2.1) it is

recommended to write down the free energy as a Taylor expansion. Then, for water-

benzene only the terms of first order are sufficient in order to describe the molar free

energy F of the system [9], i.e.

F (v, T, x1) = x1F1(ρ1) + (1− x1)F2(ρ2) = x1F1(v/x1) + (1− x1)F2(v/(1− x1)) (5.5)

where v ≡spec. volume, T ≡temperature, x ≡molar ratio, ρ ≡molar density. The

indices 1 and 2 stand here for benzene and for water. Therefrom follows the additivity

of the partial pressures pi to the total pressure P

P = −∂F/∂v = p1 + p2 ≡ pC6H6 + pH2O . (5.6)

Now, using the ideal properties of the mixture, the phase diagram, cf. fig. 5.11, can

be constructed for not too high temperatures (< 200◦C):
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The pressure follows from eq. 5.6. The maximum pressure of the mixture is the sum

of the saturated pressure of water and benzene(3-phase state or azeotropic point).

The dew lines in the p-x diagram from the azeotropic point are horizontal. Only in

the very close neighbourhood of a pure substance (x = 0 or x = 1, omitted in fig.

5.11) the saturated pressure of the mixture deviates from the azeotropic pressure and

approaches the saturated pressure of each substance.

The boiling line between the 2-phase area and the gas is determined by the equations

total pressure : P = pH2O + pC6H6

right to the azeotropic point : xC6H6 = pC6H6 sat/P (5.7)

left to the azeotropic point : xH2O = pH2Osat/P = 1− xC6H6

where the index sat denotes the saturated state of the vapor.

Generally, the vapor pressure of the saturated vapor species (called ”steam”) depends

from T and is determined by a Wagner equation [81], the unsaturated species (called

”air”) is calculated by the ideal gas law. Then, the molar ratio xsat of saturated

”steam” on the azeotropic line can be calculated

xsat = psteam/(psteam + pair) (5.8)

This allows to calculate the saturated molar enthalpy of the ”steam-air” mixture

hsat = (1− xsat)hgair + xsath
g
steam (5.9)

Here h are the molar enthalpies here taken at the dew line for air and steam at the

temperature T .

We calculate also the total molar enthalpy h of the partly saturated liquid-gas mixture

h = (1− x0)hgasair + xgxsath
gas
steam + (1− xg)hliquidsteam (5.10)

where x0 is the given initial content of water of the liquid-gas mixture. xg is defined

as the molar ratio of gas. The introduction of xg becomes necessary if the expansion

or compression crosses the dew line at x0 = xsat and the process moves into the partly

saturated 2-phase-area where x0 > xsat. xg can be derived as follows: The molar ratio

of ”air” in the mixture is (1− x0) = xg.(1− xsat). Thus it follows:

xg = (1− x0)/(1− xsat) (5.11)

liquid

Dieter
Linie
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Table 5.3: the thermodynamic properties of the benzene and water [99]:

units: energies H in kJ/kg, volume V in m3/kg, entropies S in kJ/(kg.grad)

benzene

T(K) p/(bar) V’.103 V”.103 H’ H” S’ S”

450 9.746 1.43 42.47 47.7 367.9 3.0095 3.7215

350 0.917 1.209 397.1 -160 239.7 2.4937 3.6357

water

T(K) p/(bar) V’.103 V”.103 H’ H” S’ S”

450 9.32 1.123 210.883 747.7 2773.9 2.105 6.61299

350 0.41635 1.0272 3851.3 321.69 2638.4 1.0376 7.6575

The algorithm

In order to determine the isentropes of a vapor mixture water-benzene mixture I start

with the equation of enthalpy dH = V dP + TdS . If we determine the isentrope it

holds dS = 0. This constraint allows to find iteratively the isentrope from step to step

if an initial point is given.

dH = V dP or Hi+1 = Hi + V (Pi+1 − Pi). (5.12)

The principal program sceme to determine the isentrope is the following:

• calculate the initial values of the first point:

set N , T , x, P and calculate psat , xsat , H , xg

• for every i from the point 1 until to the endpoint index N−1

– set Pi+1

– solve Hi+1(Ti+1) = Hi(Ti) + V (Pi+1 − Pi) for Ti+1 by iteration using the

equation of state

– determine the final values psat, xsat of each point

• next point i

The calculation uses the tabulated values from table 5.2 and 5.3
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The results of the stabile calculation

In the phase diagram, cf. fig. 5.11, the arrows indicate the region where Doczekal’s

cycle is proceeded. We calculate this cycle here for the equilibrium case because it gives

an idea what Doczekal meant when he speaks about a dual effect. This equilibrium

cycle follows the rhythm

- big isentropic expansion from the azeotropic point

- removal of liquid

- isentropic compression with the gas only until the boiler temperature is reached

- isotherm compression until the gas reaches the azeotropic point

- evaporation of all condensed liquid during the cycle

If the system is started at the upper temperature it contains a saturated water-benzene

vapor mixture of N particles of the specific volume vg whose total volume is V0 = vg∗N .

If the piston is expanded isentropically the gas is cooled down adiabatically. By this

procedure only a ratio xg of all N particles in the piston volume remains gaseous and

a ratio (1− xg) of (only) water liquid condenses. The benzene remains completely in

the superheated state, cf. fig. 5.11. Then, the liquid water is separated off from the

gas and is recompressed to the initial starting pressure by a pump, whose energy is

neglected here in the following because this amount of energy is negligible compared

with the gas compression. The results of the stabile equilibrium first order calculation

for this model [9] are shown in fig. 5.12, fig. 5.13 and 5.14. A more exact second

order calculation of h does not change the result significantly. Surprisingly the model

for this crossed quasi-isothermic cycle yields a small second law violating net gain of

energy per cycle which is contrary to other binary systems like water-air. This result

could be enhanced if the gas is cooled back during the adiabatic compression by a heat

exchanger with the condensed cooling liquid.

Nevermind, this overunity result is not significant enough and has to be tested by an

more exact model calculation. Then we will see whether the result is real or a product

of the simplifying model assumptions.

The gain efficiency per cycle (defined by energy gain / energy invested pro cycle) is

quite small (< 1%) if compared with standard Rankine cycles. The cycle efficiency is

near to zero as it is expected from ideal gas adiabates without losses.

cycle

large

Dieter
Linie

Dieter
Linie
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Figure 5.12: Doczekal’s p− v−cycle calculated

the cycle consists of: 1) an isentropic adiabatic expansion (red full line), 2) a separation of

the phases, 3) an adiabatic isentropic compression of the gas to the switching point (blue full

line) 4) an isotherm compression to the initial pressure (full green line) 5) an evaporation

of the condensed fluid(on the full green line) Note the small net gain work area in the left

upper corner of the diagram!

Figure 5.13: Doczekal’s T − v−cycle calculated

description and colors are the same as in the picture above on this page



70 CHAPTER 5. NO SECOND LAW IN THERMODYNAMICS ?

Figure 5.14: Doczekal’s xG − v - cycle calculated

the cycle consists of: 1) an isentropic adiabatic expansion (red full line), 2) a separation of

the phases, 3) an adiabatic isentropic compression of the gas to the switching point (blue full

line) 4) an isotherm compression to the initial pressure (full green line) 5) an evaporation of

the condensed fluid(on the full green line)

I calculated also the Rankine cycle efficiency of a cycle with water-benzene, see fig.

5.15. It is very near to the optimum Carnot effiency. This result coincides approx-

imatively with the observations of Irinyi’s referies. Irinyi’s steam engine cycle is a

quasi-Rankine cycle shown in fig. 5.15.

This cycle proceeds as follows:

point 1 → 2: isobar + isotherm; point 2 → 3: isentrope; point 3 → 4: isobar;

point 4 → 5 isobar + isotherm; point 5 → 1: (for fluid) first isentropic then isobar ;

The states of the different points of the cycle can be calculated from the program

point 1: T1 = 176.85 C, liquid state, p1 = 19.0912 bar, x = 0.5088

point 2: T2 = 176.85 C, saturated vapour, p2 = 19.0912 bar, x = xsat = 0.5088

point 3: T3 = 86.2093 C, p3 = 1.3333 bar, xG = 0.9394, x = xsat = 0.5416

point 4: T4 = 76.85 C, saturated vapour, p4 = 1.3333 bar , xsat = 0.68774

point 5: T5 = 76.85 C, saturated liquid state, p5 = 1.3333 bar , x = 0.5088

point 6: T6 ≈ 76.85 C, liquid state, p6 = 19.0912 bar, x = 0.5088
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Figure 5.15: the Irinyi - Rankine cycle

The program routines developed so far can be applied also for the calculation of Irinyi’s

cycle, cf. [9]. Using these values, the tab. 5.3 and the h mol ex values calculated by

the program we obtain the enthalpy differences between the points

point 1 → 2: isobar evaporation: ∆h12 = 30.664kJ/mol (data from tab. [99])

with ∆h12 ≡ h2 − h1 = x.(HC6H6
′′ −HC6H6

′)MC6H6 + (1− x).(HH2O
′′ −HH2O

′)MH2O

point 2 → 3: adiabatic expansion: ∆h23 = −8.6kJ/mol (data calculated by program)

with ∆h23 ≡ h3 − h2

point 3 → 5 isotherm compression with condensation: ∆h35 = −34.0803kJ/mol

with ∆h35 ≡ h5 − h3 = h5 − (h1 + ∆h12 + ∆h23)

and h1/5 = xHC6H6MC6H6 + (1− x)HH2OMH2O

point 6 → 5 adiabatic compression: ∆h56 is not necessary to be calculated here

point 6 → 1: isobar heating: ∆h61 ≈ 11.7kJ/mol (estimative data for Cp from [99])

with ∆h61 = CpT with Cp = xCmolp (C6H6) + (1− x)Cmolp (H2O)

Due to dh = vdp+ TdS and dp = 0 we can identify Q12 = ∆h12 > 0, Q35 = ∆h35 < 0

and Q61 = ∆h61 > 0 as exchanged heats. Therefrom we calculate the efficiency to be

η ≡ Q12 +Q61 +Q35

Q12 +Q61

≈ 19.5% < ηC ≡
T450 − T350

T450

≈ 22.2%. (5.13)

According to this estimative calculation the Rankine cycle of the mixture yields effi-

ciencies near to Carnot’s maximum. This makes Irinyis’ measurements believable, cf.

tab.5.1, if one assumes some additional unknown loss channels.

5 6

May be that Doczekal's claimed "Over-Carnot - operation is due to uncontroled 
cooling by the environment
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5.3.2 labile case

Introduction

In order to explain the non-equilibrium phenomena in section 5.2.2 we need the theory

of spontaneous condensation of supersaturated gases. However, we have to note that

the state of the theory is far from being accomplished still today. Only some basic

of it are generally accepted. The generally accepted knowledge can be summarized

as follows: In a clean atmosphere (with no germs) and if the gas is sufficiently su-

persaturated the condensation process starts spontaneously by a energy fluctuation

over a defined activation barrier of droplet formation. These new born droplets at

the top of the activation barrier are called ”critical droplets”. They are characterized

by a critical radius r∗. This process is called spontaneous condensation. If the fluc-

tuation has exceeded the activation barrier for the critical droplet then the critical

droplets become a germ at which further condensation takes place in a supersaturated

atmosphere. It is possible also that dust particles and aerosols are the germs for an

condensation. This process is called heterogeneous condensation. It is excluded and

Figure 5.16: the growth phases of a droplet(from [102]); dotted line ≡ critical radius
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Table 5.4: the theoretical literature of spontaneous condensation

year authors topic ref.

1806 Laplace mathematical theory of capillarity [103]

1870 Kelvin capillarity applied to droplets , critical radius [104]

1875 Gibbs free enthalpy of the critical droplet [16]

1886 Helmholtz correction of Kelvin critical radius [105]

1886 Thomson alternative droplet radius formula [106]

1927 Farkas almost complete formula of condensation rate [107]

1929 Volmer growth law; critical droplet = activated complex [108]

1935 Becker/Doering free enthalpy and condensation rate of a droplet [109]

1939 Volmer droplet radius as maximum of free enthalpy [110]

1942 Oswatisch droplet growth limited by heat exchange [111]

1950 Reiss extension to mixtures [112]

1951 Mason droplet growth limited by mass transport [113]

1951 Mason/Frisch distingushing kinetic and continuum regime [114]

1958 Cahn-Hilliard variational formulation of nucleation [115][116][117]

1984 Bedeaux application of non-equilibrium thermodynamics [118][119]

2006 Horsch application of molecular dynamics [120]

is not discussed in this chapter, for further reading see [121]. For homogeneous con-

densation 4 growth phases are distinguished (l ≡ mean path length), cf. fig.5.16

1) the kinetic regime: r∗ < l

2) the transition regime: r∗ ≈ l

3) the continuum regime: r∗ > l controlled by diffusion

4) the coagulation regime which is the fusion of the separate droplet to a bulk liquid

In this chapter article we discuss only phases 1 until 3 .

A time table of the development of the theory of spontaneous condensation can be

found in tabel 5.4. The tabel summarizes the authors who introduced new aspects

first. Oftenly the discussion about the right opinion regarding the theme is going on

until today. I will discuss the points of tabel 5.4 and will propose some new ideas.
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the theory of capillarity of Young and Laplace

The Young-Laplace theory of capillarity from 1805 [122] and 1806 [103] describes

quantitatively correct the additional pressure by surface tension which arise at the

boundaries between different media [123]. The pressure Pr inside a liquid droplet [16]

[124] is

Pr = Pd +
2γ

r
(5.14)

where Pd is the pressure in the gas, γ the surface tension, r is the radius of the droplet

and the indices d and r stand for vapor (d) and for the droplet (r). Gibbs derived this

formula also by optimizing the inner energy [125, 126]. Modifications published [127].

the critical droplet

a) the concepts of reference pressure and temperature for deviations from equilibrium

The deviation of a gaseous state from the thermodynamic equilibrium is characterized

by two additional variables which allow to characterize the distance from equilibrium.

If a system has the non-equilibrium states Pd and Td one defines a reference pressure

Pref ≡ Psat(Td, v) which is the equilibrium pressure at Td. For the non-equilibrium

temperature Td one defines the reference temperature Tref = Tref (Pd, v) which is the

temperature necessary so that Pd would be an equilibrium pressure, cf. fig.5.17.

This definition, however, is not so very clear as it will be shown in the following:

Conventionally it is assumed that the reference temperature is identical with the equi-

librium temperature Tref = Tsat at Pd which can be determined by solving the equation

of the dewline pressure equation [106]. Originally this definition was derived for germ

formation in supersaturated solutions. It was transferred to gases by Frenkel [128].

Any critical discussion about the limits of this method was not found in the literature.

Because the application of this method did not yield reasonable numerical results in

code programming I had to modify the conventional procedure here. So I calculate

Tref by solving the equation of state (EOS) at the present (labile) pressure Pd and

the specific volume vg in the gas in order to obtain the reference equilibrium state, cf.

fig.5.17. For the empirical temperature Td, however, the reference pressure is defined

traditionally at Pref = Psat . In other words: I define the reference states to be deter-

Dieter
Pfeil
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Figure 5.17: the definition of Psat and Tref for any labile supersaturated state Pd(Td)

conventional definition left pic: for a labile point Pd(Td) the reference pressure Psat lays on

the vapor pressure curve at Td, the reference temperature Tref = Tsat is at Pd.

alternative definition right pic: for a labile point Pd(Td) the reference equilibrium pressure

Psat lays on the saturated pressure curve at Td, the reference temperature Tref = Tsat can

be found at the on the EOS-line at Pd at the actual (labile) specific gas volume vg

mined by the projection points of the labile state onto the equilibrium function.

Two different situations of non-equilibrium exist, cf. table 5.5:

supersaturation and undersaturation. Supersaturation or undercooling entrains the

phenomena of homogeneous or heterogeneous condensation. Undersaturation or over-

heating entrains the phenomenon of evaporation and boiling.

b) the definition of the critical radius

Kelvin derived a first order phenomenological derivation of the formula which allows

to derive the so called critical radius r∗ of embryonic droplets which start to develop

in a undercooled supersaturated gas atmosphere [104]. Originally Kelvin assumed

the gas to be ideal and applied the hydrostatic law of the liquids for a gas instead

of using the barometric formula for a gas atmosphere. Robert v. Helmholtz [105]

corrected the approximation and improved so Kelvin’s formula. On another manner -

but applying the ideal gas law for the real gas state- he obtained the today so called

Kelvin - Helmholtz formula

r∗ =
2γvfl

RTd log(Pd/Psat)
(5.15)
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Table 5.5: labile thermodynamic states

pressure temperature reference state

supersaturation Pd − Psat ≥ 0 or Td − Tref ≤ 0 dew line

& undercooling log(Pd/Psat) ≥ 0 or gaseous EOS

undersaturation Pd − Psat ≤ 0 or Td − Tref ≥ 0 boiling line

& overheating log(Pd/Psat) ≤ 0 or liquid EOS

Here is vfl the specific volume of the liquid droplet, R is the Avogadro constant,

Pd is the empirical supercooled vapor pressure and Psat is the equilibrium reference

pressure of the gas calculated at the actual non-equilibrium temperature Td . One

should note that a corrected Kelvin derivation applying the barometric pressure law

contains the ideal gas law as an approximation. Therefore 5.15 should fail for very

real and condensing fluids especially near to critical points.

Nevertheless, the droplet formula 5.15 ia a good approximation for the most purposes

and it is still today the state of the art.

Newer definitions define the critical radius of a droplet to be situated at the maximum

(or saddle point) of the total free enthalpy G of a droplet [129], cf. fig. 5.18 below.

This idea goes probably back to [110] and was spread out by [128]. The advantage of

this method is that it can be extended for multi-component droplets as proposed by

Reiss [112]. If we formulate an equation for the free enthalpy G of a droplet with N

component and with the radius rj we obtain for each droplet phase[130]

Gj = (
N∑
i=1

ni

∫ pfli

pgi

vgi dpi)j + 4πγr2
j + ((

∑
i

ni)v
fl(Pd − Psat))j (5.16)

The integral of this equation is abbreviated here as chemical potential difference µi ≡∫
vidpi of a component i. Note that vi of the labile gas phase is still unknown. Most

authors solve this by applying again the mentioned ideal gas approximation vi =

RT/pi which yields ∆µi = −RT log(pdi /p
sat
i ). So, applying the ideal gas formula for

only one component and Laplace’s capillarity formula 5.14, using the approximation

Pd ≈ (Pd − Psat) and setting (dG/dr = 0) one can solve for r which results in 5.15.
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Figure 5.18: Free enthalpy g (per mass or mol) of a droplet vs. radius r

c) the Thomson critical radius formula

Gibbs free enthalpy g of the liquid (index fl ) and the labile vapor phase (index d )

can be equilibrated for every critical droplet according to [110]

gd(T, Pd) = gfl(T, Pr) = gfl(T, Pd + 2γ/r) = gfl(T, Pd) + 2γvfl/r (5.17)

where the droplet pressure Pr is defined according to the Laplace law, i.e.

Pr = Pd + 2γ(T )/r. According to Volmer [110] this assumption holds for a (labile)

optimum of the Gibbs enthalpy at the critical radius r∗ of a droplet, cf. fig.5.18.

According to Hedbäck [124] an expansion of the droplet free enthalpy gd and gfl at

any radius r0 yields for vapor and liquid each

gd = gd(Tr0 , Pd) + ∆T (r0)
∂gd
∂T

gfl = gfl(Tr0 , Pr0) + ∆T (r0)
∂gfl
∂T

+ ∆P (r0)
∂gfl
∂P

(5.18)

Here is ∆T (r0) ≡ Tr − Tr0 and ∆P ≡ (Pr − Pd)− (Pr0 − Pd0). Differing to Hedbäck I

modify the last term in ∆P the second equation by including the actual vapor pressure

Pd defined by Pd ≡
∑

i pd(i) . If r0 = r∗ holds then eq. 5.17 and both sides of eq. 5.18
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can be equated and it follows

(Tr − Tr0)
∂gd
∂T

= (Tr − Tr0)
∂gfl
∂T

+ (Pr − Pd − (Pr0 − Pd0))
∂gfl
∂P

(5.19)

After division with (Tr − Tr0) follows

(Pr − P − (Pr0 − P0))/(Tr − Tr0) =
∂gd
∂T
− ∂gfl

∂T
∂gfl
∂P

= −sd − sfl
vfl

(5.20)

Here sd and sfl are the entropies of the vapor and the liquid respectively. Another

equation can be obtained if the left side of 5.20 is calculated taking the limes r → r0

and applying Laplace’s law cf. eq. 5.14

lim
r→r0

[(Pr − Pd − (Pr0 − Pd0)]/(Tr − Tr0)]

=
∂

∂T
(Pr − Pd) = (

2γ

r

∂γ

∂T
− 2γ

r2

∂r

∂T
) (5.21)

So with eq.5.20 and eq.5.21 the final differential equation for critical droplets is

∂T

∂r
=

2γ

2r ∂γ/∂T + r2(sd − sfl)/vfl
(5.22)

Hedbäck gave already an approximative solution of this equation. I found out that the

equation can be solved generally. Therefore I change the independent variable from r

to x by using the definition x ≡ 1/r

∂x

∂T
= −2x.∂γ/∂T + (sd − sfl)/vfl

2γ
(5.23)

The analytical solution of eq. 5.23 is

xH = − 1

2γ

∫ Td

Tref

sd − sfl
vfl

dT (5.24)

So the inverted critical droplet radius xH = 1/rH is obtained.

The principal result 5.24 (but without integration) is old [106]. It can be anticipated

from an another ansatz: Frenkel [128] found out that a critical droplet can be inter-

preted as a fluctuation of free enthalpy for which holds dg = vdP + (sd − sfl)dT =

2γvfldx+ (sd − sfl)dT = 0. Applying 5.14 and solving for x yields eq. 5.24.
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d) modifications of the Kelvin-Helmholtz critical radius formula

I propose here another procedure which can avoid the ideal gas equation usually applied

in labile state theories. I assert that a critical droplet arises from a spatial fluctuation

of the gas density at an extremum of inner energy u. This takes place in the volume v in

the gas atmosphere around the birth of a droplet. There it holds du = −pdv+Tds = 0.

So it follows

v − v0 = p−1

∫
Tds = p−1

∫ Td

Tref

CvdT (5.25)

with v0 = v0(Psat, Td) = RTd/Psat . Writing down the conventional and the alternative

equation two possibilities exist for the chemical potential of the gas state

µi =

∫ pdi

psati

vidpi = −RT log(pdi /p
sat
i ) I) (5.26)

µi =

∫ pdi

psati

vidpi = v0i(p
sat
i , T )(pdi − psati ) +

∫ pdi

psati

(

∫ T

T i
ref

CvdT/p)dp II) (5.27)

The first equation I )5.26 is the conventional formula which applies the ideal gas law.

The second equation II) 5.27 represents the alternative - i.e the maximum state of

inner energy (du = 0) . One can suppose that this state exists in the homogeous gas

at some distance from the critical droplet.

For a demixed droplet of water-benzene the general formula 5.16 can be simplified to

Gj = nj∆µj + 4πγjr
2
j + njv

fl
j (Pd − Ps)

= nj∆µj + 4πγj(
3njv

fl
j

4π
)2/3 + njv

fl
j (Pd − Ps) (5.28)

where nj are the mol numbers in a droplet of one component. For binary mixtures

Reiss [112] developed a general method to solve these problems. It was known from

[131] that the maximum or the saddle point of the droplets free enthalpy separates the

growing from the decaying droplets. The calculation showed that the critical radius

can be obtained by solving for the optimum, i.e. by setting the derived partial free

enthalpies to zero and solving the equations

dGj

dni
= 0 (5.29)

Dieter
Vieleck
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Vieleck
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In our simplified case of a demixed liquid and if both species of droplets are condensing

we obtain critical radiuses r∗ for water (W) and benzene (B) (with ρi ≡ 1/vi ≡ density

and ni ≡ 4πr∗i
3/ vfli )

r∗W =
2γW

−ρflW∆µW − (Pd − Ps)
(5.30)

r∗B =
2γB

−ρflB∆µB − (Pd − Ps)
(5.31)

with

µi = RT (pi − psati )/psati + log(pi/p
sat
i )

∫ T

Tref

CvdT (5.32)

The maximum of free enthalpy of each critical droplet follows to be

Gmax = −4

6
πr∗3[(Pd − Ps) + ρfl∆µ] =

4

3
πγr∗2 ≡ 1

3
γA (5.33)

As shown by Volmer [132] the free enthalpy of the critical droplet Gmax can be inter-

preted as surface energy minus compression energy. This can be casted in the formula

Gmax = γA− 4π(Pr − Pd)r∗ 3/3, where the surface area A is A ≡ 4πr∗2 . It coincides

with Gibb’s original result [125] .

The rate formula of spontaneous condensation

According to Volmer’s classical theory [108] the formation energy Gmax of a droplet

has to be interpreted as the activation energy of the droplet growth process. Hence

nucleation rate I (in mol germs per volume) can be derived to

I = Cexp(−Gmax/(kTd)) (5.34)

Here C will be explained below, k is the Boltzmann factor and Td is the (undercooled)

temperature of the vapor with

Gmax =
1

3
γA (5.35)

The expression coincides with the maximum free enthalpy valid for the critical droplet

as shown in eq.5.33. This classical old version is the most simple accepted form of
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description and is applied here only. The most common formulation of the complete

prefactor C here has been derived by Zeldovich [133]. It is described by

C = f ∗ A ∗ Z/vd (5.36)

where the droplet surface A is A = 4πr∗ 2, vd is the specific volume of the gas, the

non-equilibrium factor Z is

Z = (
∆G

3πkTd
)1/2 3vfl

4πr∗ 3
(5.37)

and the frequency factor f is

f =
Pd

(2πmkTd)1/2
(5.38)

The rate equation has been modified by Feder[134]. For miscible mixtures it has been

generalized by Reiss[112]. It was applied practically by Zahoransky [130].

the growing droplet

a) Introduction

In order to descibe the enthalpy of the whole labile transient condensing process one

has to determine temperature and radius of each class of grown-up droplets at each

time moment. Generally, the growth of droplets can be described by systems of coupled

time stepper ODE’s [135], of which we scetch here the general mathematical form

∂T

∂t
= f(t) (I)

∂r

∂t
= g(t) (II) (5.39)

∂T

∂r
= f(t)/g(t) = h(t) (III)

If the relevant relations are found these equations can determine the growth of droplets

born at any time interval during the process. So one obtains at every moment the

”droplet spectrum”. It allows to sum up the enthalpy of the whole system at any

time t. This is needed to determine the non-equilibrium isentrope of expansion or

compression.
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Figure 5.19: Hedbäck’s model temperature distribution at a condensing droplet, from [124]

b) The droplet growth equation determined by the non-equilibrium transport field

If the boundary conditions at the droplet surface are known then the equation system

of non-linear thermodynamics in the gas can be solved which yields the space-time

profiles of temperature, specific density and the advection field around a droplet in

an non-equilibrated gas atmosphere. This is very complicated. So I apply here the

simplified ansatz from Hedbäck’s thesis [124] because it can be programmed with my

possibilities. In appendix 5.6 it is shown in the appendix that this ansatz contains a

coupled boundary condition for heat exchange and mass at the changing liquid - gas

interface and can be reconciled with the formalism of non-equilibrium thermodynamics

under some simplifying assumptions.

Hedbäck derives an equation for heat exchange at the boundary of the droplet, cf. fig.

5.19

1

4πr2

∂Q

∂t
= αr(Tr − Td)
= αm(Tr − Ti) (5.40)

= αk(Ti − Td) = Ḣz − Ḣb − Ḣ0 = ṙ((Wk −
r

3
Wb)/vr −W0)

The symbols in 5.40 are defined in fig.5.19 and in the text below as follows:

Ḣz ≡ 4πr2ṙWk/vr (5.41)
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is the enthalpy contribution to the droplet due to the mass transport and the phase

transition. Wk is calculated to

Wk = H0
b + Tr(sd(Td, Pd)− sf (Tr, Pr))−

Cg
p (Tr − Td)

1 + αm/αk
+ g∆ (5.42)

where the original equation had to be corrected here by g∆ which is defined in fig.5.20.

The symbols are: αr is the total heat transfer number which defined as αr ≡ (1/αk +

1/αm)(−1) consisting of two serial resistors 1/α of heat transfer due to conduction

αk = λ/r ( λ ≡ heat conduction coefficient of the mixture vapor, cf. [81]) and mass

transport αm . This number is calculated by αm = Cg
p (
√
Pd/(2πvi)−(∂r/∂t)/vr) where

vi is the specific volume (per mass unit) of the vapor molecules to be condensed. Note

that vi is the value situated directly at the droplet boundary and has a different value

than the mean value vDi in a far distance from the droplet. αm is explained by the

kinetic model of heat exchange in the next neighborhood of the droplet[124].

Ḣb = 4πr2ṙ(H0
b +Wb.r/3)/vr is the enthalpy contribution due to the growing mass of

the droplet. Wb is calculated to (we have corrected here Hedbäck’s κT by κT ≡ vr )

Wb = (Cfl
p + vr

2

r

∂γ

∂T
)
∂T

∂r
+ vr

2γ

r2
(5.43)

Ḣ0 = 4πr2ṙW0 is the enthalpy contribution due to the surface enthalpy. W0 is calcu-

lated here as

W0 = (
2γ

r
+
∂γ

∂T

∂T

∂r
)r (5.44)

From eq. 5.40 an equation of the growth of a droplet radius can be derived

∂r

∂t
=

αr(Tr − Td)vr
Wk − r

3
Wb − vrW0

(5.45)

This formula will become an element of the ODE system of a growing droplet, cf.sec.5.6.
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c) the equation of the temperature of a growing droplet dependent from the radius

As mentioned already in the introduction of this section an important ingredient for

the numeric calculation of spontaneous condensation problems is an equation for the

temperature of the growing droplets as function of the radius. As long as the temper-

ature of the droplet Tr is different from the global temperature Td the droplet is not in

equilibrium with its environment and grows or shrinks. A first approximative relation

of such a equation was developed by Gyarmathy [136]. He derived

Tr − Td = (1− r∗

r
)(Tref − Td) (5.46)

This relation can be derived also as a special case from the differential equation by

Hedbäck [124] if the entropies sd and sfl and the surface tension γ are set to be

constant with respect to temperature. Hedbäck’s differential equation 5.22 has been

derived already above

∂Tr
∂r

=
2γ

2r.∂γ/∂T + r2(sd − sfl)/vfl
(5.47)

Originally Hedbäck claimed that this equation is a general solution for ∂Tr/∂r valid

for all droplets. However, it is wrong to apply 5.47 for growing droplets because the

equation 5.47 asserts that the mother eq. gd(Tr, Pd) = gfl(Tr, Pr) cf. eq. 5.17 is valid

always. This holds only at the labile extremum (saddle) point of the free enthalpy

Gj of a droplet of species j. In order to solve this problem for the growing droplet I

generalize eq.5.17 and 5.47 by adding a compensating difference of free enthalpy (per

mass or mol) g∆
j in order to obtain an equation, namely, cf. fig. 5.20.

g∆
j ≡ gjd(Tr, Pd)− g

j
fl(Tr, Pr) (5.48)

This term g∆
j will be evaluated in the following.

It can be rewritten, cf. fig. 5.20

g∆
j ≡

Gj,max(Tr)

4πr∗3/vfl
− Gj(Tr)

4πr3/vfl
(5.49)

Here Gj,max and Gj(Tr) stems from eq. 5.33 and eq. 5.28 . Along the line of the

derivation in sec. 5.3.2 one obtains a differential equation as solution for any droplet
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Figure 5.20: Free enthalpy g (per mass or mol) of a droplet vs. radius r

g∆ is defined as difference specific enthalpy between the real growing droplet minus specific

free enthalpy (per mass or mol) of the critical droplet, cf. text.

written dependent either in terms of r or x

(I assume for simplicity that vfl = const. So ∆vfl ≈ ∂g∆/∂P = 0 can be neglected)

∂x

∂T
= −2x.∂γ/∂T + (sd − sfl + ∂g∆/∂T )/vfl

2γ
(5.50)

∂T

∂r
=

2γ

2r∂γ/∂T + r2(sd − sfl + ∂g∆/∂T )/vfl
(5.51)

with the solution
1

r
≡ x = − 1

2γ

∫ Tr

Tsat

sd − sfl + ∂g∆/∂T

vfl
dT (5.52)

For better handling and programming some transformations are useful.

Inserting eq. 5.28, 5.30 and 5.33 in eq. 5.49 yields

g∆
j (Tr) = 3vflγ(

1

r∗(Tr)
− 1

r
) = 3vflγ(xK(Tr)− x) (5.53)

From eq. 5.48 follows with eq.5.17

g∆
j (Tr) = gjd(Tr, Pd)− g

j
fl(Tr, Pr) = 2vfl(xH(Tr)− x) (5.54)

Dieter
Stift
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From eq.5.53 and 5.54 follows

x = 3.xK − 2.xH (5.55)

Using eq.5.53 and 5.55 we can write

g∆ = 3.γ(Tr)vfl[2xH − 2xK ] = 6γ(Tr)vfl[xH − xK ] (5.56)

the full equation system and the solving algorithm

The solving algorithm contains two main elements:

1) a routine solving for the actual critical radiuses in the state of supersaturation

2) If the supersaturation is high enough and if the amount of condensation is quanti-

tatively relevant then the so called droplet spectra routines are switched on each for

water or benzene droplets. Then at any moment the growth rate is calculated for

each present droplet class which were born at any preceding iteration step before. The

(simple version) equation system to be solved for Tr and r of every class of droplets

(in continuous or in discrete version) is

∆Tr
∆t

=
∂Tr
∂r

∂r

∂t
or

T ir − T i−1
r

ti − ti−1

=
∂Tr
∂r

∂r

∂t
I) (5.57)

1/x =

∫ t

0

∂r

∂t
dt or 1/xi = 1/xi−1 +

∂r

∂t
∆t II) (5.58)

Eq. 5.57 I) contains eq. 5.50 and eq.5.45 , eq. 5.58 II) contains eq. 5.56 and eq.5.45. If

the temperatures and the radiuses of all droplet classes are calculated the composition

of gases and liquids in both phases can be determined. The obtained data allow

to add up the enthalpy of the mixture. In order to be able to solve the complete

problem numerically with own means it is assumed here that the gas phase is always

spatially homogeneous for pressure, temperature and density. This assumption is

also a preliminary simplification to test out whether the system can be calculated

numerically. Then the enthalpy of the combined vapor-liquid system is

h = XGx
W
D h

W
g + XG(1− xWD )hBg

+
∑
j

∆XW
fl (j)hWfl +

∑
j

∆XB
fl(j)h

B
fl (5.59)
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Here we define x0 to be x0 ≡ the initial and total molar ratio of water in volume,

XW
fl ≡

∑
j ∆XW

fl (j) total molar ratio of liquid water as sum of the different droplet

classes j of same radius. Similarly is XB
fl ≡

∑
j ∆XB

fl(j) the total molar ratio of liquid

benzene with X
W/B
fl (j) = v

W/B
g (ti)Ij∆tir

3
ij 4πL/v

W/B
fl being the molar liquid content of

a class j of droplets of water or benzene at the moment ti born before at the moment

tj in the volume. Then it follows it is XG ≡ 1 − XW
fl − XB

fl ≡ molar gas content in

the volume. xWD = [x0 − (1 − xG) XW
fl /(X

B
fl + XW

fl ) ] /xG is the molar ratio of water

steam in the gas (due to mass conservation) and v
W/B
g ≡ x

W/B
D XGv(ti) follows which

is calculated according to the simplifying assumption from the beginning.

The expansion and compression of the cylinder proceeds as follows: The expansion

is started at an equilibrium point. The time profile of expansion + eventually com-

pression v(t) is set by the formula v(ti) = v(t1) + vhub(1 − cos(2πti)). vhub is cal-

culated from the given maximum compression factor χcomp ≡ v(tendpoint)/v(t1) by

vhub = v(t1)(χcomp − 1)/2.

The total solving algorithm of the non-equilibrium expansion proceeds as follows:

In the initial phase - as long as the condensation rate is low enough - the droplet

spectrum is switched off: This means XW
fl = 0 , XB

fl = 0. Only the critical radiuses

and the very low ineffective spontaneous condensation rate are calculated.

If one species of droplet only becomes supersaturated and can condense, the system

to be solved is dependent only from the unknown variables temperature Td and la-

bile partial pressure Pd. Then the final equation system to be solved consists of the

equations

v =
∂h

∂Pd
xK = xH (5.60)

The second equation states that the reciprocal critical droplet radius is the same

regardless whether it is calculated according to Volmer / Frenkel or according to

Kelvin / Helmholtz . If two pure species are supersatured the system to be solved is

dependent from the unknown variables Td, Pd (water) , and Pd (benzene).

Then, the system to be solved is

v =
∂h

∂Pd
for water : xK = xH (5.61)

for benzene : xK = xH
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So the algorithm solves for the transient thermodynamic pathway of the labile mixture:

• calculate the first point i=1 from the initial values:

set N , T , x, P and calculate psat , xsat , h , xg

• for every i from the point 2 until to the endpoint index N

– set new volume v(ti) and starting values Pd and Td of the iteration

– if sufficient droplets exist already - determine their growth using eq. 5.58

– add up the enthalpy eq. 5.59

– solve equation system eq. 5.60 or eq. 5.61

– calculate and store all relevant values of the actual point

• next point i

For the integration the Euler-Heun procedure is used. At the moment only equidistant

time intervals are used with a maximum number of 4600 time points. The numeri-

cal calculation of the superstaturated states (without condensation) works well, the

droplet condensation, however, breaks down after some iterations due to missing mem-

ory. All calculations are done by a small 2 GHz Pentium 4 notebook.

The longest time per run to perform a simulation is about a day.

Results

The first numerical results of the simplified model discussed are shown in fig. 5.21.

They show that the difference between labile state and equilibrium curves are not too

large if no liquid condenses. Surprisingly the supersaturated pressures are higher than

the equilibrium isentrope line which is contrary to all textbooks. It is clear that the

method is still not matured enough with respect to quantitative correctness in order

to make statements regarding the Second Law.

Furthermore it is also clear that Doczekal’s pressure values, cf. fig. 5.5 are far off from

any curve calculated here and therefore seem to be doubtful.
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Figure 5.21: P-v- expansion water-benzene calculated according to different methods

main results: 1) the supersaturated expansion is at higher pressures than the isentrope

2) Doczekals experimental data show much higher pressures than the other curves calculated

Possible Improvements

Before I describe the possible improvements of my current algorithm I write down the

thermodynamic equations valid for real gases [52]

H̄ =
n∑
i=1

xi(H̄0i +

∫ T

T0

C0
P i(T )dT )

+ (ZM − 1)RT +

∫ ∞
v

(P − T dP
dT

)dv

S̄ =
n∑
i=1

xi(S̄0i +

∫ T

T0

C0
Pi

T
dT +R log xi) (5.62)

− R log(
RT

P0v
) +

∫ ρ

0

(
R

ρ
− 1

ρ2

dP

dT
)dρ

CP = CV +
T

ρ2

(dP
dT

)2
V

(dP
dρ

)T
= CV −

T (dP
dT

)2
V

(dP
dv

)T

My present non equilibrium-algorithm still applies caloric equilibrium data of the

vapor. The long term aim is to apply real gas quantities Cp , Cv , H and S in the
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labile state obtained numerically during the simulation without any extrapolation by

an equilibrium EOS. In order to achieve this for (∂P/∂T )v , (∂P/∂v)T and Cv I propose

the following method:

At each iteration step vary the volume sligthly by ∆v to v′ = v ± ∆v . Perform

the varied iteration at v′ as done for v already ! These varied iterations produce the

additional data which allow to extrapolate numerically the next values in the numerical

calculation of (∆P/∆T )v and (∆P/∆v)T (in the labile state).

Then Cv can be estimated numerically from the differential dS(T, v) = ∂S/∂T dT +

∂S/∂v dv . Applying the Maxwell relation (∂S/∂v)T = −(∂P/∂T )v one obtains

CvdT ≡ T (
∂S

∂T
)vdT = T (

∂P

∂T
)vdv + TdS (5.63)

where the heat dQ = TdS is nonzero if liquid condenses or evaporates, or if heat

exchange with the environment takes place, cf. eq. 5.40.

If liquid condenses significantly then the problem complicates:

Then the differential quotients (−∆P/∆T )v = (∆S/∆v)T and −(∆P/∆v)T and their

differences ∆ST ,∆Pv,∆Pv and ∆hT have to be determined for Cp numerically for

each class of droplets. In order to solve for the local specific gas volume vi around the

droplet the additional equation to be solved is:

vi =
∆h− T∆S

∆P
(5.64)

Therefrom for each step the labile real gas contributions for CP in eq.5.62 at every ti∫ vn−1

vn

(P − T dP
dT

)dv and

∫ ρn

ρn−1

(
R

ρ
− 1

ρ2

dP

dT
)dρ (5.65)

can be determined for the gas phase. They can be added up to the full integral and

help to determine the labile values of eq.5.63 . This procedure may allow to remove

the initial approximation vi = v
W/B
g by summing up over the self-organized spatial

profiles of gas density and temperature around the droplets.
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5.4 How to replace the Second Law

Today the name ”Second Law” suggests that there should exist a law which describes

something which is meant that the Second Law should be. Actually, however, in reality

there exists no Second Law but a zoo of Second Laws [59, 137] and even for a ”normal”

scientist it is normally not clear at all whether and in which sense these version are

equivalent, what they mean exactly and which is the generally valid real version.

In the following I will present some of these different versions and will compare them

with the statements of nonlinear dynamics. It is clear that independently from the

mathematical rhetorics each of these theories should come essentially to the same

result in the end for the same physical system. However, in fact, this is not the case

as it will be shown below.

The most known versions of the Second Law are:

I) Clausius integral version II) Kelvin’s ban on 100% efficiency heat to work converter.

III) Gibb’s stability criterion IV) Prigogine’s principle of minimum entropy dissipation.

To I) In 1854 Clausius introduced the expression dQ/T and he formulated the ban on

perpetuum mobiles of 2nd kind in terms of dQ/T for closed cycles with irreversible

parts [138]. In 1865 he defined dS ≡ dQ/T and created the term entropy for S [15].

So he derived for a closed cycle with irreversibilities∮
dS ≥ 0 (5.66)

I call this formulation the integral formulation of the Second Law (version I)

Due to energy conservation (i.e.
∮
dU = T

∮
dS + W = 0) it follows as a special case

that under isothermal conditions - if only one heat bath is present - it holds

W = −
∮

pdV ≥ 0

W = −
∫ ∮

PdE dV ≥ 0 all equations at T = constant (5.67)

W = −
∫ ∮

MdH dV ≥ 0.

The electro-magnetic versions of eq. 5.67 rely on the fact that the currently best state

of the art electric engines convert electric energy to mechanical energy by an efficiency

near to 100% .
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To II) Another well known formulation of the Second Law from 1851 goes back to

Kelvin [139] p.174 ff. It bases on Carnot’s prediction (proven by Clausius[140]) of a

maximum (Carnot) efficiency for any steam engine [141] which is regarded as an equiv-

alent to the Second Law. It is equivalent also to Clausius statement from 1850[140],

which means, that no machine can transport heat against a temperature difference

by itself. It is concluded therefrom by Kelvin that a cyclic machine does not convert

heat to work with an efficiency of 100%. This is the classical thermodynamical ban on

perpetuum mobile of 2nd kind (version II). It means that any machine can consume

only (and does not deliver) mechanical or electro-magnetic energy after a closed cycle

if it is in contact with one heat bath only.

To III) In 1875 Gibbs applied the Second Law in order to define the stability behavior

of a system [125]. He formulated the Second Law in differential form

dS ≥ 0 (5.68)

I call this version the differential version (version III)

Therefrom the principles of mechanical and thermal stability are derived

κS ≡ −
1

V
(
dV

dp
)
S

> 0 cv > 0 cp > 0 κT > 0 (5.69)

To IV) In the 20th century the Second Law has been transferred to non-equilibrium

thermodynamics by the Brussel school of Prigogine [142]. They reformulated the Se-

cond Law as the principle of minimum entropy production with the aim to have a

principle of stability for systems out of equilibrium.

dS

dt
− > minimum (5.70)

They extended the thermodynamics also to non-linear systems. Therefore the new

mathematical methods of non-linear dynamics were applied. These methods allow to

describe qualitative different systems like bistable, chaotic and oscillating ones which

all were not covered by thermodynamics so far. Stability behavior is analyzed here by

linear stability analysis, cf. tab.5.6.

They showed that thermodynamic stability (i.e stability conditions based on minimum

entropy production) can be proved by linear stability analysis as stable fixpoints of a

dynamical system. Furthermore they weakened the concept of stability by introducing
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Lyapunov stability and applied these new methods in order to characterize the stabil-

ity of dissipative oscillating systems.

It should be emphasized that all the axioms mentioned do not create a consistent situ-

ation automatically. So Muschik [143] postulates that the constitutive equations have

to be restricted in order to fulfil the Second Law. Otherwise violations are possible.

From the beginning of thermodynamics not everybody liked the narrow axiomatic de-

pressive philosophy behind the Second Law(s) and its consequences. So J.J. Thomson

wrote a book [106] already in 1888 in order ”to endeavour to see what result can be

deduced by the aid of .. dynamical principles without using the Second Law of Ther-

modynamics.” I will show by comparison with the features of the thermodynamics

how non-linear dynamics can be applied.

Therefore I regard a nonlinear dynamic FitzHugh-Nagumo equation

v̇ = v − v3 − w + Iext ẇ = v − a− bw (5.71)

It is well known that this system can have stable, bistable and oscillating solutions

dependent from the control parameter q = (a, b). Principally this system can be mir-

rored if the moving coordinate x = (u, v) is exchanged for instance by the mapping

x∗ = (u, v∗) = (u,−v). It is clear that the orientation of a cycle in a (q, x) plane

is reversed in the mirrored (q, x∗) plane space. The stability behaviour remains un-

changed under this operation. So it is mathematically shown that the orientation

of any quasi-stationary path in a (q, x)-(working) diagram is independent from the

stability behavior of the system. Transferred to physics terminology this means:

Table 5.6: comparison of thermodynamics vs. non-linear dynamics concepts, cf. [142]

Non-linear dynamics thermodynamics

stability: by linear stability analysis minimum entropy dissipation

Second Law check by check of orientation by constitutive equation

of quasistationary cycle and material test criteria

variable control parameter extensive variable (??)

variable dependent variable intensive variable (??)
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1) the maximum entropy principle (version III) is a existence condition of any stable

thermodynamic system. It is a purely mathematical statement contrary to the other

versions of Second Law. The condition is necessary - but not sufficient for existence

of the Second Law. Therefrom I conclude:

Even if stability exists and if the maximum entropy principle is fulfilled - the ban on

a perpetuum mobile of second kind can be violated if stable inverted fixpoint curves

exist which have control variables as independent parameters.

2) the constitutive equations of the material determine the orientation of a thermo-

dynamic cycle finally. They describe whether a substance behaves according to the

Second Law(version I or II) or not [9]. In the model with Doczekal’s system one can

regard the vector q = (N, V ) as the control parameter - and the x = (P, T ) - vector

corresponding to the moving variables (u, v) of the differential equation system. Fur-

ther Second Law violating candidates due to such a appropriate (or inappropriate)

constitutive material behavior can be found under the key word ”inverted hysteresis”

3) May be that the inverted cycles have to do something with a phenomenon known

from non-linear dynamics called labile fixpoint stabilization. This means that a labile

equilibrium point can be stabilized if the system is brought near to the labile equilib-

rium and if a periodic forcing is applied for stabilization. Known examples for such

phenomena are known from the artists in the circus cf. fig. 5.22 or in science [144]

and engineering. These principles are known as inverted pendulum in mechanics [145]

[146] , they are applied in simple quadrupole mass spectrometer or in more sophis-

ticated higher pole setups to trap molecules [147]. They are perhaps unnoticed in

Ruthenocuprate-system [148]. So in the labile state space around these labile maxima

”the thermodynamic rules of the world” may be reversed for inverted hysteresis non-

dissipative material properties. Then permanent oscillatory states can be stabilized.

So I summarize:

It is known that the different versions of the Second Law are not equivalent [137]. The

most real versions of the Second Law may be the criteria which coincide with the sta-

bility analysis of non-linear dynamics. These formulations have a clear mathematical

foundation and can not die if new physical observations are made.

If we are more radical we can say that the old version of the Second Law should be

replaced by correct and complete dynamically constitutive equations of the material

which contain the physical information of the system exclusively. This alternative



5.4. HOW TO REPLACE THE SECOND LAW 95

Figure 5.22: the inverted pendulum

pragmatic formulation of the ”Second Law” is of course quite contrary to the quasi-

religious intentions of Clausius who wanted to establish the Second Law as a natural

law independent from the individual material and the processes applied [57].

For a dynamical system an axiom about the Second Law compatibility is obsolete

because the question is answered by the mathematical solution of the dynamical sys-

tem. As shown by the Doczekal cycle the classical ban on perpetuum mobiles could

be violated if the cyclic processes are proceeded inversed outside of the small subspace

reserved for the well known thermodynamic cycles of Clausius’s theory or Prigogines

chemical oscillators.
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5.5 Summary

1) The equilibrium calculation of the water-benzene system confirms the typical effi-

ciency of Irinyi’s steam engine measured by independent referies.

2) A new non-equilibrium theory of spontaneous condensation introduces the following

improvements for the calculation methods of adiabatic expansion and compression:

a) it calculates labile expansions and compressions in cylinders forced by a piston.

b) no EOS extrapolation or ideal gas assumption is necessary for the labile gas phase.

Instead of this a new equation is introduced which bases on the postulate that the

critical radius of droplet formation has to be always the same - regardless whether it

is calculated according to a Kelvin-like or a Thomson-like prescription.

c) The conventional definition of reference equilibrium temperature of the labile state

is modified in order to be able to describe mixtures.

d) the theory can be based on conventional non-equilibrium thermodynamics, it ap-

plies new boundary conditions at the droplet boundary and has the real perspective

to be extended to general mixtures.

3) The calculated pressures of an adiabatically expanded water-benzene vapour are

much lower if they are compared with the claimed measurement of Doczekal.

4) Despite of the many new features of the theory the method is still not matured and

has to be improved by varying and precising the implemented approximations.

5) The Second Law is a heuristic helping tool of the 19th century in order to predict

the direction of irreversible processes. Today, if we are able to formulate the problems

in terms of non-linear dynamics, this method can be avoided.
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5.6 Appendix

In this section it is discussed to which extent Hedbäck’ s equation 5.40

αr(Tr − Ti) = ṙ((Wk −
r

3
Wb)/vr −W0)

is compatible with non-equilibrium thermodynamics. We will see that the equation is

a combined boundary condition for heat and mass at the liquid-vapor droplet interface.

The derivation of 5.40 implies many not mentioned simplifying assumptions. The the-

oretical framework of our discussion can be found in the textbook by Baranowski[22].

First we neglect any force fields on the particles and set the momentum equation ( i.e.

viscous effects and pressure tensor) to zero for simplification.

So, if the momentum balance in [22], p.50, equ.(4.42), is omitted the following reduced

balance equation system consisting of the mass balance [22], p.36, equ.(3.30), and the

enthalpy balance [22], p.180, eq.(12.119),

∂ci
∂t

+ v.∇ci = −∇Ji − ci∇v (5.72)

ρcp
∂T

∂t
+ cpv.∇T =

n−1∑
i=1

DiQ
∗
i∇xi +∇T −

n∑
i=1

Ji.∇h̄i (5.73)

is the starting point of the consideration here. The symbols are: ci the molar concen-

trations of a species, v the velocity (if specied with an index specified for a species), Ji

is the molar current pro surface , Di is the diffusion constants of the species i , Q∗i is

the cross diffusion coefficient (Dufour effect = inversion of thermodiffusion !), and h̄i is

the enthalpy density of a component i . The generalized thermodynamic fluxes Ji are

described generally by Onsager’s linear approach to describe transport phenomena,

i.e.

Ji =
n−1∑
j=1

Lij(Xj −Xn) + LiiQ
∗Xq (5.74)

Jq =
n−1∑
j=1

LjjQ
∗(Xj −Xn) + LqqXq (5.75)

where X are the thermodynamic forces which drive the fluxes. The appropriate defini-

tion of the forces X is given below in the context of this article. The Lij are Onsager’s
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linear thermodynamic coefficients which make the equation numerically correct.

The equations 5.72 and 5.73 describe the thermodynamic field around the condensing

droplet. If they are solved the spatial profile of mass and heat is obtained. However,

because the inhomogeneous structuring of the gas phase is neglected in our work, cf.

sec 3.3.5, these equations are not solved explicitely. I am interested only in the bound-

ary conditions of the heat and mass at the droplet vapor liquid interface. In order to

describe the heat balance around the droplet the Gibbs fundamental equation

T.
ds̄

dt
=
dū

dt
‘ + p.

dv̄

dt
−
∑
i

µ̄i
dxi
dt

(5.76)

has to be written down. Then, if the balance equations of inner energy density ū

and xi are inserted and after many calculation steps described by Baranowski in [22]

p.83-87 , he obtains in the end the known non-equilibrium entropy balance equation

of entropy of the form (which we multiplied by the test volume ∆V )

∂(∆V ρs̄)

∂t
= (−divJ ′ρs̄ + σρs̄).∆V (5.77)

where the variable J ′ρs̄ in the divergence term is defined by (with v∗ ≡ transformed

velocity, see definition below)

J ′ρs̄ = ρs̄v∗ +
∑
i

s̄iJi +
Jq
T

(5.78)

with the shorted entropy source term definition

σρs̄ ≡
1

T
Jq.Xq +−

∑
i

Ji.Xi (5.79)

and with the thermodynamic forces X defined here by

Xi = −∇(
µ̄i
T

)

Xq = −∇T
T

(5.80)

The growth of a droplet is controlled by the rate of heat or/and mass exchange with the

gas environment. This is characterized by the boundary conditions at the phase border.

The growth of a droplet is controlled by the rate of heat or/and mass exchange with the
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gas environment. This is characterized by the boundary conditions at the phase border.

For the boundary condition of mass the oldest rule stems from Smoluchowski[149].

He stated c = 0. As a consequence it was calculated then that this rule lead to a

growth law for purely diffusive system which shows an infinite stream into the sink

when the condensation process starts. Therefore Collins and Kimball [150] improved

the boundary condition and found arguments for a boundary condition of the form,

ck = D.∇c. If both side of the equation are multiplied by 4πr2 and having Fick’s first

law in mind (at no convection) the rule can be interpreted that a diffusive influx of gas

leads to the growing of the droplet into the opposite direction. This rule was applied

by Collins [151] and Frisch and Collins [114]. They calculated analytically the growth

law therefrom for a purely diffusive system. The result shows already the well known

separation between the kinetic regime and the continuum regime around the droplet.

Collins’ boundary condition however has a problem. It does not include the known

convective Stefan flow. Another more general boundary condition is proposed here.

This new boundary condition for mass exchange includes the convective flow

cfl.ṙ = Dg
∂cg
∂r
− cg(v − ṙ) (5.81)

This boundary condition is a continuity equation taken at the moving gas vapor inter-

face of the droplet. In order to be able to compare equation 5.78 with Hedbäck’s heat

balance eq. 5.40, we change 5.78 to a moving coordinate making a spatial coordinate

transformation ξ → ξ∗ where the origin of the new coordinate system is sitting now

at the droplet boundary interface. The coordinate transformation is

ξ∗‘ = ξ − r(t) v∗ = ξ̇ − ṙ(t) (5.82)

The transformed balance at droplet boundary is

T
∂(ρs̄∆V )

∂t
− Tσρs̄∆V = −T.(div(ρs̄(v − ṙ) +

∑
i

s̄iJi +
Jq
T

).∆V (5.83)

The left side of the transformed equation represents the inner of the droplet, the right

side represents the outer influx of the gas. Now we want to identify the terms of the

last equation by comparing them with Hedbäck’s derivation eq.5.40. In order to do

so we remember our first boundary condition for mass eq. 5.81 , we assume s̄ = s̄i
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to be valid in our case and we apply the Gauss integral theorem (integrating variable

∆V = 4πr2∆r) for the second and third equation then we can identify the terms of

5.83 by the following equations

T
∂(ρs̄∆V )

∂t
= 4πr2(W0 +

r.Wb

3vr
+
T s̄fl
vr

)ṙ I)

−T (ρgs̄g(v − ṙ) +
∑
i

s̄igJi) = Tρfls̄gṙ = ṙ(Wk + T s̄fl)/vr II) (5.84)

4πr2Jq = −4πr2λgradT = αm(Tr − Ti)
. . . III)

The first equation describes the change of enthalpy or heat in the liquid droplet under

quasi-isobaric conditions, the second describes the material heat/enthalpy transport by

the energy contained in the gas to be condensed and the third represents the diffusive

heat transport away from droplet. It holds eq.III = eq.II− eq.I. On the left side this

is eq. 5.83 integrated (where σρs̄ = 0), on the right side we obtain exactly Hedbäck’s

original boundary condition. We see that the entropy source term has been set to

σρs̄=0 because it has no pendant in Hedbäcks eq. 5.40.

I summarize: Hedbäck’s heat transport equation at the droplet interface is equivalent

to a combined non-equilibrium thermodynamical boundary condition of heat and mass

valid for cases where the following simplifications can be applied:

1) pressure differences and chemical effects in the gas are neglegted in the calculation

2) Any entropy production is regarded to be negligible with respect to other energy ex-

changes. This means physically that any temperature differences in the liquid droplet

are neglected in the entropy balance. Note that other models show that the tempera-

ture differences may exist [118][119].

It should be mentioned that according to Baranowski [22] the calculation here using

the classical set of formulas is not fully correct. He presents a corrected set of equa-

tions which is more complicated and which is skipped here. It may become relevant if

one extends the theory to multi-component droplet condensation.



Chapter 6

Beyond the Second Law

6.1 Systems driven by Fluctuations

I will give here a short incomplete view on a field of science which is relevant in the

context of overunity systems. This section is written in order to give some keywords

in order to ease the access to the primary official scientific literature.

6.1.1 Introduction

In section 2.2.2 vortex systems in fluctating media were discussed. These theoretical

model objects were invented by Smoluchowski [152] and are better known under the

name ”rachets” today. Feynman popularized them in his famous textbook[153]. He

argued from the thermodynamics doctrine (without any material information input)

101
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that it is impossible to violate the second law with these systems because a nano-

ratchet system itself behaves as a thermically fluctuating object. So he developed a

theoretical thermodynamic model which prevents any precise ratchet working.

However, it is clear that vortex systems (see fig.2.1) work even if they are driven by

a fluctuating noise field which of course has to match to the system. Therefore it

is interesting to find out the conditions and the limits at which these systems work.

Then the question of the second law compatibility can be answered more precisely.

It is shown here by standard model considerations how this problem can be tackled:

A ratchet system element may be in a spatial (and/or time) fluctuating noise field Ẽ.

It exerts the generalized torque T by the coupling of the fluctuating field Ẽ to the the

generalized charge (or resistance) matrix density Q̂ integrated by the volume dx′3

T =

∫
(Q̂(x′,x).Ẽ(x′,x))× x dx′

3
(6.1)

The torque T is exerted on the arms of a wheel as shown in fig.2.1 and is can produce

work. We describe the energy transfer in first order by the equation

T = Θ.ϕ̈+ γ.ϕ̇ (6.2)

where ϕ is the angular coordinate, γ damping constant Θ the moment of inertia of the

generalized mass and T the fluctuating generalized torque from the environment.

So, generally, in order to build any system driven by any noise source we have to

answer the following questions:

What is the amplitude of the driving noise ? What is the noise spectrum? What is

the spatial distribution ? Can the noise couple to the system or it is damped out ?

Here I will give a short incomplete overview of the state of the art.

6.1.2 Noise Driven Systems

While application of the ratchet principle at a larger length scale is standard technol-

ogy today, nano-ratchets are current topics of research of scientific groups worldwide.

Such system are named also as Brownian motors or quantum motors dependent from

the source of fluctuations. A collection of typical examples are described in Applied

Physics 75A in 2002. These are non-equilibrium systems with a periodic potential
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which are driven additionally by a weak periodical noise source. So a flow is generated

which can be harvested. Some of these system are built experimentally showing parti-

cle separation. The energy balance question is discussed seldomly. Most interesting is

this question for AC - driven ratcheds because they can circumvent the thermal effects

in the model and produce DC offset current due to quantum noise [154].

Stochastic resonance can be a candidate for overunity efficiencies also. Haenggi dis-

cusses these system under this aspect, however his opinion is not too optimistic [155].

Very interesting is an ”inverted hysteresis” ratchet model with two noise sources [156],

see also sec. 6.2. The discussion of the system in the article is purely formal. The

question remains whether it can be applied for electro-magnetic variables connected

to a thermal and a quantum noise source.

6.1.3 van der Waals Force and Zero Point Energy

In the overunity scene the concept of zero point energy (ZPE) is a central hypothesis.

It suggests that the energy balance problem can be resolved for overunity systems by

a noise energy influx. Here I refer to the ”official” current state of discussion, cf. [157].

The application of this hypothesis was initiated by Casimir[158] and Polder[159] in

1948. They assumed the vacuum to be full of zero point noise waves which have their

origin from the Heisenberg uncertainty. They are present at absolut zero temperature.

These waves can be shielded or reflected by metal boundaries So flat metal parallel

plates are pressed together from outside if they are very near. (An analogous effect

is well known from ships which must not pass nearly because they are attracted to-

gether if the waves in the sea are high). Interestingly the identical result for the same

system was derived later by assuming a spatial distributed source of a electromagnetic

background noise field [160]. Later this assumption was justified again by quantum

electrodynamics [161]. In these papers the effect could be interpreted also as a van-

derWaals interaction. The attracting part were the quantum-mechanically fluctuating

(London-)forces [162, 163] between instantaneously induced dipoles.

Although the results of all methods coincide, the natural philosophy of the approaches

is opposite: London’s vanderWaals dispersion forces are explained by forces caused

from inside of the molecules, Casimir forces seem to be generated from the outside
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field. The natural philosophy of the last model suggests generally that the structures

of matter may be stabilized by a fluctuating input field from outside. The idea is

founded by quantum field theory and is called zero point energy field.

So proposals came up to apply this for the explanation of gravitation[164], or as well

to implement it as a new physical force for the construction of propulsions [165, 166]

and -(perhaps because of infinite energy integrals appearing in the calculation)- for

second law violating gain cycles [167, 168]. A later paper [169] discusses Casimir forces

in terms of the equilibrium thermodynamics of a photon gas. It concludes that most

thermodynamic changes of this ZPE system are unstable. A newer articles tries to

explain the selfcharging of piezoelectric crystal batteries and capacitances [170].

The main problem of ZPE energy research, however, is, that the proved force effects

discussed are tiny, see cf.[157]. They are accessible experimentally by the AFM [171].

So the energy exchanges of the speculated or proved overunity cycles are still small

and far off from any economic relevance.

6.2 Inverted Hysteresis Systems

6.2.1 Introduction

Inverted hysteresis exists if the orientation of the hysteresis loop of a magnetic or

dielectric material is opposite to the well known loss hysteresis. According to the

Poynting theorem of electrodynamics[172, 173] the existence of an inverted hysteresis

area means that the material performs electromagnetic work under isothermal condi-

tions. Inverted hysteresis systems are candidates for cycles beyond the Second Law.

Articles describing such effects exist since the thirties of the last century [174].

However, the phenomenon itself has been overlooked or not mentioned for long time.

In the sixties it is found that the ferroelectric hysteresis loop of DNA is inverted

partially[175]. In the seventies magnetic layer systems are investigated as storage

elements. The inverted hysteresis is rediscovered as a surface effect interesting for

magneto-optic storage discs[176]. 1977 the first magnetic metal layer system is dis-

covered and shows a still unstable inverted hysteresis [177]. In 1990 the systems are



6.2. INVERTED HYSTERESIS SYSTEMS 105

more stable at room temperature. It can be shown that the inverted hysteresis effect is

measured as a global effect[178] although it is attributed to an interface coupling[179].

In 1994 Aharoni[180] remarks in a theoretical article that inverted hysteresis might

violate the second law of thermodynamics.

Inverted electric hysteresis can be found in the gate capacitance of semiconductor

storage elements[9]. Typical examples are the Yusa-Sakaki FET[181, 182], MFIS

capacitances[183] as used in industrially produced DRAM cells[184].

Any discussion of the energetic aspect in the references about inverted hysteresis

is seldom, only one article was found which sheds doubts on the effects measured

therefore[185]. Another article shows up possible problems of the measurement with

inverted magnetic hysteresis systems[186]. But despite of this, every year some articles

about inverted hysteresis systems are published until today[187].

Tabel 6.1 gives a short overview for the different types of literature about inverted hys-

teresis systems from the beginning up to today. For magnetic layer systems especially

with Cobalt there exist some coincidences between the different articles. For electric

systems many references report an inverted hysteresis of some FET designs.

The last references found in Tab.6.1 are singular and still have to be confirmed or

disproved.

Figure 6.1: typical asymmetric inverted gate capacitance of a p-MFIS-FET, cf.[183]
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Table 6.1: Typical references of inverted hysteresis systems

system work year reference

Cu-Co layer exp. 1990 [178]

Pd-Ni-multilayer exp./theor. 1996 [188]

CoFeAlO thin film exp. 2005 [189]

Co-MOVCD-film exp. 2006 [190]

Co:CoO core nanoclusters exp 2008 [191]

Pr0.7Ca0.3MnO3/SrRuO3 Superlattices exp. 2011 [187]

Yusa-Sakaki-FET exp./theor. 1997 [181, 182]

MFIS-FET exp. 2005 [183]

DRAM-FET exp. 2005 [184]

Ni-Fe wire exp. 1938 [174]

bulk Rhodrosite exp. 2004 [192]

bulk Ruthenocuprates exp. 2002 [148]

Fe-Cu composite exp. 2007 [193]

6.2.2 Basics for Hysteresis Measurements

the Maxwell Equations

If one follows the history of electromagnetism the first mathematical descriptions of

magnetism were formulated as effects originating from current wires [194]. After Fara-

day introduced the field concept Maxwell could summarize quite generally most of

the knowledge of electromagnetism of his time in a set of partial differential equa-

tion describing the fields in space [195–197]. In order to maintain the consistency of

Ampere’s law with the continuity equation of electric charges the electric displace-

ment current was added. After Maxwell’s death, in the course of time, especially the

constitutive equations of the materials complicated the Maxwell theory. Therefore,

Maxwell’s equations are reproduced here in a modified general updated form, cf. [198]:
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−
∮

E ds =
1

c

dφ

dt
=

1

c

d

dt

∑
i

∫
B dAi∮

H ds =
1

c

dθ

dt
=

1

c

d

dt

∑
i

∫
D dAi (6.3)

−∇× E =
1

c

∂B

∂t
+
∑
i

(
4π

c
ρHivi −∇× (

vi
c
×B))

∇×H =
1

c

∂D

∂t
+
∑
i

(
4π

c
ρEivi −∇× (

vi
c
×D)) (6.4)

0 = ρ̇H +
∑
i

∇jH(i) 0 = ρ̇E +
∑
i

∇jE(i) (6.5)

divB = 4πρH divD = 4πρE (6.6)

The definitions of the symbols are from Jackson[172], cf. also appendix 6.4.4. The

summation symbol in the lines of 6.3 and 6.4 takes into account that different species

of charges with different velocities can exist at any point in the field. In the equations

6.4 the Lorenz force [199] and the Rowland effect [200][201] are accounted for. In

the induction law the magnetic charges are written out in order to include magnetic

currents and charges, cf. experiments. [202–206]. Therefrom follow the energy and

moment conservation of systems with electromagnetic charges, cf. appendix 6.4.2.

The Maxwell equations are the Helmholtz decomposition of the electromagnetic field,

cf. section 2.2. Note that the equations 6.4 are directly derived from the equations 6.3.

The mathematical calculation is from [207]. The derivation is reproduced in appendix

6.4.1. The continuity equations 6.5 follow from 6.4 by applying the div-operator.

In the next section the very important decomposition of the terms ρ̇ or Ḋ or Ḃ into

two parts will be introduced namely ρ̇ = ρ̇S + ρ̇P or Ḋ = ḊS + ḊP or Ḃ = ḂS + ḂP ,

cf. [208]. The index P denotes the contributions originating from charge polarisation,

the index S denotes the ”new” source term, cf. [209], which describes charge sep-

aration in the medium, maybe due to ionisation, charged particle generation, photo

effect or interband hopping into the conduction band. The analogous source terms for

magnetism describe self-polarisation maybe due to a phase transition at a Curie point.
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the Definitions for Inductivity and Capacitance

The concepts of inductivity and capacitance are older than Maxwell’s theory. They

are defined by the old simplified and incomplete precursor versions of Maxwell’s field

equations which were formulated in terms of I and U . The equations (6.7) below

−∇× E =
1

c

∂

∂t
(BP + BS) − U = Lİ + φ̇S

−∇jE = ρ̇EP + ρ̇ES I = CU̇ + IS (6.7)

show the (shorted) Maxwell field equations and aside the adequate old style versions.

The technical possibilities or restrictions of measurement lead to the prescription that

inductivity L and capacitance C have to be defined as slopes L ≡ d
dI
φ(I; t) and

C ≡ d
dU
Q(U ; t) . Inductivity L(I) and capacitance C(U) can be measured so locally

either by a AC signal and a phase measurement or by a pulse experiment each with a

small amplitude. Due to the method of measuring the source terms φ̇S or IS are not

detected under stationary conditions of I or U . The constitutive material functions of

φ̇S or IS have to be found to reconstruct the information loss of the measurement.

Fig. 6.1 shows a typical diagram of a capacitance with inverted hysteresis. It sug-

gests that after a closed cycle the system should be charged up because it holds

∆Q =
∮
dQ/dU dU 6= 0 [210]. However, in reality it is observed after a cycle that

the whole system is again in the same initial charge state when the cycle was started.

This fact can be explained by including the source term in the continuity equations.

I discuss here the two basic theoretical possibilities in order to reconstruct the lost

integration constants after introducing L ≡ d
dI
φ(I; t) and C ≡ d

dU
Q(U ; t):

1) If ∆QES = 0 it holds ∆QES =
∫ ∫

ρ̇ES dtdV = −
∫ ∫

(∇j+ ρ̇EP ) dtdV = 0. Then, if

the hysteretic cycle area is non zero we have a ”polarisation jump” or ”voltage jump”.

This case corresponds to the birth of a inner dielectric double layer.

2) If ∆QEP =
∫ ∫

ρ̇EP dtdV = −
∫ ∫

(∇j+ ρ̇ES) dtdV = 0 holds after the cycle ∆t, the

polarization state can be described by a (unique) state funtion. Therefrom it follows

that the inverted hysteresis charge area, i.e. the effect of the integrated charge source

term IS in equation 6.7 is measured by the integration of the ∇j-offset current. This

I call a ”charge jump” which can explain the electric case.
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For magnetic systems ”magnetic charges” are introduced as an analogon to electricity.

This approach can be tested by asymmetric magnetic hysteretic materials [193].

So we can conclude: Any energetic description of nonlinear capacitances or inductivi-

ties with hysteresis must include source terms like φ̇S or IS because inverted hysteresis

capacitance or inductance diagrams do not represent the complete information of the

system. Such systems can behave as if they are supplied by a source of additional

charge or voltage ”from inside”. The direct physical cause of these source terms are

the birth and the death of charge pairs for electric phenomena and for magnetic phe-

nomenas self-polarisation effects by a changing magnetic density.

If source terms are present additional equations outside of electrodynamics (maybe

from thermodynamics or quantum mechanics) must describe any outer influx sources.

6.2.3 Magnetic Systems

Magnetic inverted hysteresis is demonstrated generally by a M−H diagram which at

first sight contains the full energy information of the sample measured quasistatically.

An alternative diagram exists which shows susceptibility χ vs. magnetic field H. It

contains less information because it is derived from the slope of the M−H - diagram.

Normally the M−H diagram shows a point symmetry. Then the ”magnetic charge

area” (indicated indirectly by
∮
χ dH) is zero. So any net flow of magnetic charges is

excluded and the hysteresis is explained only by polarisation changes.

Four method are applied in order to measure inverted hysteresis.

1) MOKE (magnetooptic Kerr effect) 33 references found

2) VSM (vibrating sample magnetometry) 38 references found

3) AC-detection (alternating current detection) 6 references found

4) TM (torque magnetometry by a torsion balance) 1 reference found

to 1) The magnetooptic Kerr effect is only surface sensitive. This method only gives

no answer to questions about the energetics of the whole probe.

So all these references are neither cited nor discussed here.

to 2) The vibrating sample magnetometer gives a better answer about the energetic

behaviour of the probe. It was invented in 1959 [211] and is a standard method today.
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It is very sensitive and can be used for thin film samples. Today superconducting coils

and SQUIDS are build in oftenly. Then the results of measurements at field strengths

HC < 20 Oe can be critical because the superconducting coils can have persistent coil

currents which falsify the instrument’s readout [186] and can suggest so an inverted

hysteresis. Therefore 11 from 19 references are omitted because it is not clear whether

the authors is accounted for this problem.

to 3) The AC-detection is applied seldomly in the context of inverted hysteresis.

It is less sensitive if compared with VSM. It is applied mainly for bulk probes.

to 4) The torque magnetometry is the oldest method [212] in order to measure inverted

hysteresis but today it is applied quite seldom.

A selection of the experimental articles about inverted hysteresis gives Tab. 6.2.

There exist about 8 articles analyzing inverted hysteresis theoretically.

Generally the theory of magnetic materials describes the inner field M of any material

by a combination of five basic theoretical effects or energies [213]:

1) the external (Zeeman-) field energy due the interaction with an external H-field.

2) the (Weiss-) demagnetisation field energy due to the self-interaction of the field.

3) the exchange energy. This is a potential energy associated with gradients in the

orientation of the magnetization field. Or- it is due to the internal interaction energies

in or at the sample at boundaries.

4) the anisotropy energy. It describes the dependence of the potential energy on the

orientation of the magnetization field relative to the crystal axes.

5) the magnetostrictive energy. It describes the influence introduced by strains in the

crystal lattice on the magnetization field energy.

The experimental inverted thin film systems normally have a hard and a soft magnetic

axis. Only one direction of them can show inverted hysteresis. Therefore, most theo-

retical articles discuss the anisotropy energy (point 4) as cause of inverted hysteresis:

Aharoni[180] and O’Shea + al-Sharif [179] discussed the early two-layer film systems.

Aharoni’s model reproduces inverted hysteresis due to finite dimensions and pores.

The model of O’Shea and al-Sharif includes a simple Stoner-Wohlfarth-(SW) model

[214] (i.e. Zeeman- plus exchange terms) for each layer plus an exchange term describ-

ing the interaction between the two adjacent films. Both want to explain the
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Table 6.2: the currently most significant measurements of magnetic inverted hysteresis

system method −HC/(G) T/(K) references

thin films:

Zr40Cu50Mn10 VSM [215] 80k 77 [177]

Co-Cu-thin film VSM 4k 300 [178]

CoFeAlO thin film VSM 160 300 [189][216]

CoFe/LaCoFeO thin film VSM 80 300 [217]

La0.7Sr0.3MnO3/SrRuO3 SQUID 160k 5 [218]

Fe0.78Pd0.22 VSM 8k 300 [219]

Cobalt systems:

Co-MOCVD VSM [220] 200k 300 [221] [190]

Co:CoO clusters SQUID 160k 300 [191]

Co clusters SQUID 800 125 [222]

multilayers:

Co-Cu-multilayer VSM 4k 300 [223][224]

Pd-Ni-multilayer VSM/TM[225] 8k 300 [226]

Co/Pt/Gd/Pt multilayer SQUID 8k 4,5 [227]

Fe/Ho multilayer VSM 16k 80k [228]

sandwich structures:

MnIr/CoFe/Ru/CoFe/MnIr SQUID 1k 300 [229]

SiN/GdFeCoSi/SiN VSM 1k 300 [230]

Ta/NiFe/Ta VSM 1,2k 300 [231]

Ni/TbFeCo/Ni trilayer SQUID 8k 300 [232]

bulk materials:

SrIIIGdIIIhexacyanochromateIII SQUID 800 2 [233]

bulk Rhodrosite AC ? ≤ 34 [192]

bulk Fe-Cu composite AC 10k 300 [193]

Fe1−xCoxSi bulk SQUID 20 4 [234]

miscellaneous:

bulk labile Ruthenocuprates VSM/AC ? 300 [148]

Ni-Fe wire AC ? 300 [174]
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Figure 6.2: typical M-H diagrams of different types of inverted hysteresis

left insert: inverted single loop [188]; right insert: partially inverted loop cf.[238]

single inverted loops as measured by [178] and [224], but obtain a 3 - loop systems

with an inverted loop in the middle, cf. fig. 6.2. A similar result is obtained by Geshev

[235] for a mixture of cubic magnetocrystalline and a uniaxial components. Y.-J. Nam

and S.H. Lim [236] simplify this ansatz again and extract from the improved classical

Stoner-Wohlfarth (SW) model[237] (with two uniaxial anisotropies) an phase diagram

of material parameters which allows to simulate an inverted middle loop of a 3 loop

hysteresis system but no single inverted loop.

Byeon et al. [238] modify the SW model and assume an only slightly oblique ”perpen-

dical” magnetic axis. The result is again a very small inverted hysteresis of the middle

loop in a 3-loop hysteresis system which they confirm experimentally, cf. fig. 6.2 .

Further theoretical paper exist discussing inverted loops in terms of the Heisenberg

formalism. The results of [239] resemble the experimental result of [240]. Another ar-

ticle [241] discusses Prussian blue as possible inverted hysteresis bulk material similar

to a previous reported bulk substance [233].

Poulopolos et al.[188], cf. fig. 6.2, investigate a 2-component Pd-Ni or Pt-Co magnet

film system consisting of two antimagnetically coupled layers. They discuss a single

observed inverted hysteresis loop which appears if the sample is not saturated magnet-

ically. In their simulation they include a quadratic anisotropy contribution from [242]

and an interlayer exchange energy. So they fit the experimental data to the single
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inverted hysteresis loop. They mention that the cycles have a metastabile pathway.

They do not believe in second law violations by arguing that elastic crystal energies

compensate the observed effect. In deed, elastic effects are not accounted for in the

model. But this is justified because there is no elastic energy exchange in their exper-

iment [243]. They obtained their data by VSM and torque magnetometry[225].

This means:

According to the Poynting energy conservation an magnetic energy outflux per cycle

represented by the hysteresis area is really observed for their experiments.

So far the following questions regarding physics and technology remain open for me:

1) Can inverted hysteresis be caused by a magnetoelastic oscillation in the VSM ?

Today modern equipment tries to avoid the elastic input by appropriate design [244].

2) Is inverse hysteresis possible at higher frequency and at a higher amplitude of H ?

Quite all methods detect the loop by small test signals and ”slow” detection speed.

3) What is the lifetime of the samples ? Can the quality be improved ?

Information of the sample lifetimes is seldom, in [177] and [223] it is about some days.

4) There exist only few bulk systems oftenly at very low temperature. How do mag-

netic cores of this material behave ?

5) Are inverted minor loops always possible, especially for 3-loop-systems ?

Two references [231] [188] were found so far mentioning explicitely that inverse hystere-

sis minor loops are obtained. Contrary, for spring exchange magnets (oftenly realized

by 3 loop systems) minor loops are not possible always, see [245] [246] [247] [187].

6) What are the long term effect if the material is permanently cycled in the field?

Do we see physical side effects like cooling or is the sample destroyed by the process ?

7) Can the samples be upscaled macroscopically in order to obtain electronic products?

Or more precise - can inverted hysteresis be transferred to tape wound metal cores ?

6.2.4 Electric Systems

Introduction - the Semiconductor Capacity

For our further discussion we present here three known electronic elements which gen-

erate a relevant semiconductor capacitance, see fig. 6.3:
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Figure 6.3: the different semiconductor capacities

a): p-n junction; b): Schottky metal(black)-semiconductor (grey);

c): MIS-contact, i.e. metal(black)-insulator(white)-semiconductor(grey)

1) the Schottky diode. This is a metal - semiconductor contact. Its behaviour was

explained qualitatively first by Schottky [248] [249].

2) the standard p-n diode. It consists of the p-n semiconductor junction. It was ex-

plained by Shockley (Nobel prize in physics 1956) [250] [249].

3) the FET . This invention goes back to Lilienfeld around 1925 [251] and Oskar Heil

around 1934 [252]. After the development of pure materials the first industrial pro-

cessable FET components were published in 1960 [253] [254]. This were MIS (metal-

insulator-semiconductor) or MOS (metal-oxide-semiconductors) transistors.

The most simple FET capacity consists of three layers of different materials, cf. fig

6.3. A basis layer made from a doped bulky semiconductor connected to the electrical

ground, an thin isolating layer oftenly consisting of an oxide and a top (thin)conducting

metal layer. If the top metal layer is charged by the application of a voltage, charges

are induced as well at the surface of the semiconductor. Then a current can flow along

channel below the surface if contacts for drain and source exist on the semiconductor.

The first successful theoretical description of the FET was the Pao-Sah model [255]. As

it is done numerically today for every static semiconductor component they solved the

Poisson equation of the charge species analytically. Additionally a thermodynamical

equation holds in the semiconductor component which describes the chemical poten-

tials equilibrated in space and determines the density of the charge species from the

Fermi distribution. The model was made popular by Brews [256] who added the
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Figure 6.4: the different FET regimes dependent from voltage; from [249]

left: V < 0 accumulation; middle: V > 0 depletion; right: inversion V >> 0

charge sheet approximation which allowed to estimate the charge and the (low fre-

quency) capacity vs. voltage of the FET correctly. The theory differs three states of

charging capacity dependent from voltage: accumulation, inversion and depletion, cf.

fig.6.4. For the p-type semiconductor substrates we have accumulation (of holes) at

the interface isolator- p-substrate at minus voltage bias. At moderate positive bias

we have there depletion of holes and at higher positive bias we have an interface ”in-

version” layer of electrons(or a two dimensional electron gas 2DEG) plus depletion of

holes. For n-type semiconductor substrates the situation is vice versa with electrons.

Fig. 6.5 shows the calculated and measured C-U diagram for p-doted systems. Coin-

cidence of the old theory [256] with the experiment can be obtained if low frequency

AC-capacitance measurement are applied. If the frequency of the AC testing signal is

too fast the inversion can not be detected because the buildup of the electrons of the

inversion layer at the interface is too slow and can not follow the frequency of the test-

ing AC voltage. This case coincides with the shape of many published C-V-diagrams

of capacitances, cf. fig. 6.1.

As mentioned already, there exist the further complications by so called traps. At

the beginning traps were only disturbing the technology, they shifted the C-V curves

or deteriorated the quality of electronic components. But after understanding and

mastering the processes behind, charge traps were applied systematically in order to

build electronic storage elements, optical detector element(CCD) or other sensors. If
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Figure 6.5: the MFIS capacities at the different voltage; modified from [249]

measurement at a) low freqency b) intermediate frequency, c) high frequencies

the traps in the isolating layer of a FET capacity are charged the capacitance curve

shifts [257]. So a hysteresis is generated. Then the state of charged storage cell can

be tested by the measurement of the drain current of a storage FET element.

Traps are locations and defects at the surface [258], [259] of the isolators or in the bulk

of the electronic elements [260] where the charges can attach, cf. also Sze [249]. They

are described similarly like donors and acceptor in the semiconductor [261]. They are

regarded to be immobile (if compared with electrons and holes). One distinguishes

interface traps at the surface, cristal defects or oxide traps in the bulk, ionic traps due

to impurities in the bulk, and also today the well defined modern traps - the so called

quantum dots. Each trap is characterized by an energy distance (or a spectrum of

energies) from the valence or the conduction band and a time constant for generation

or annihilation, cf. Sze [249].

Different methods exist for the diagnosis of these traps. An old method is a surface

conductance measurement which can detect surface traps [262]. More precise informa-

tion is obtained by newer methods which bake out the FET and measure quantitatively

the current of the ”desorbing” charge [263] [264].



6.2. INVERTED HYSTERESIS SYSTEMS 117

The today state of the art is the dynamic capacitance spectroscopy [265–267] .

Generally, storage elements based on electrically charged traps have a restricted data

lifetime because any trapped charge diffuses with time. So the idea came up to apply

the hysteresis state of a ferroelectric material instead of a trapped charge. The first

MFIS (metal ferroelectric insulator semiconductor)- FETs were built in 1974 by Wu

[268]. Today there exist different variations of the MFIS - FETs showing inverted

hysteresis [268] [269] [183] [270] [184] [271] [272] [273].

The first theory article on MFIS FETs was published in 1992 [274]. After some im-

provements [275] the static Pao-Sah theory of MFIS FET’s is today a standard in-

strument of modeling and some groups contribute to theme [276–279]. Traps are not

included in these simulations. The simulations reproduce the inverted hysteresis [275]

[278] which is a surprise for the author after some preliminary own initial numerical

experiments. If these published results are true the missing integration constant from

the C-V diagram (to the Q-V or P-E -diagram) can be identified here with the voltage

jump of the ferroelectret.

No information was found so far about the dynamic behaviour of the components.

Another very illustrative example of implementing traps systematically is the quan-

tum dot FET invented by Yusa-Sakaki [181]. This structure is shown in fig. 6.6 . It

consists of a modified FET-structure + a Schottky gate contact. As shown in fig. 6.7

the FET shows an inverted hysteresis. The cycle can be closed if the FET is irradiated

by IR-photons. Then the bound electrons leave the potential traps again and the

Figure 6.6: the Yusa-Sakaki FET ; from [209]

left: the layer structure of the FET; right: the electric circuit of the FET
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Figure 6.7: 2DEG-density seen by cyclotron resonance in the Yusa-Sakaki FET [181]

memory charge of the quantum dots (QD) is erased. The same effect can be achieved if

a negative voltage is applied [280]. Normally conventional theoretical models assume a

tunnel injection or lossy ohmic diffusion current as mechanism charging or decharging

the traps. Rack et al. [182] propose a model for the Yusa-Sakaki FET which contains

a source term suggesting an ”internal” charging of the quantum dots. So they simulate

an inverted hysteresis cycle of this FET, cf. 6.8.

Recently Marent et al. [267] published about an advanced hole storage element which

shows also an analogous inverted hysteresis due to hole storage in the quantum dots.

I discuss it below because the characteristic electronic values of the element allow the

full simulation of a parametric oscillation near to reality.

The biggest memory window of inverted hysteresis -which I found- are FETs storing

up alternatively electrons (after writing) or holes (after erasing) [281] [282].

Discussion - models for inverted capacitances

Rack’s model of the electric cycle of the Yusa-Sakaki FET calculates an inverted hys-

teresis cycle, see fig. 6.8 and 6.9. In some sense the Yusa-Sakaki FET can be regarded
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Figure 6.8: Electron density in the Yusa-Sakaki FET cycle calculated; from [209]

left: electrons in 2DEG vs. voltage; right: occupation of electrons in QD’s vs. voltage

as a realization of Maxwell’s demon. The stored electrons remain in the QD traps

until collisions with photons of the ambient thermal radiation supply enough energy

that the potential barrier can be overcome (Fowler emission). So, similary like in a

photocell, the QD-electrons select out the higher energetic part of the thermal energy

and act as a Maxwell daemon. After closing the process the cycle can be repeated.

Another (quantum mechanic) process helps to close the cycle as well: If a negative

voltage is applied then the internal triangular potential barrier of the QD trap becomes

thinner and the electrons can tunnel, cf. 6.9. So the cycle can also be closed even at

temperatures about 10 K, cf. [267]. The equations of Rack’s model [209] are

0 =! e∂tn(z) = ∂zjn(z)− eRn(z)

0 =! −e∂tp(z) = ∂zjp(z) + eRp(z)

ρi(z) = e.[p− n+N+
D −N

−
A + pQD − nQD] (6.8)

−ρi(z) = ε0∂z[εz(z).∂zφi(z)]

The first two equations are the generation law for electrons valid at every point in

the semiconductor, it assumes that no charging takes place at the quantum dots, i.e

∂n/∂t = ∂p/∂t = 0. The third equation is the total charge density composed by the

different components like intrinsic charges p and n, the QD-charges pQD and nQD,
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Figure 6.9: the conduction edge in the Yusa-Sakaki FET calculated; from [209]

U=0V

U=-0,9V

U=0V
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and the acceptors NA and donators ND. The fourth equation of 6.8 is the Poisson

equation of the semiconductor element. The solutions are shown in Fig. 6.9.

I differ slightly from Rack’s interpretation of source term of the continuity equation:

From his own simulation it is obvious that the charge density is built up at the quantum

dot, i.e. ∂n/∂t 6= 0. This is proven by the kink of the quasi-Fermi potential located

at the quantum dots. There σ = D2 −D1 6= 0 holds. I think that Rack’s source term

is identical with his selfcharging term. The source terms, however, are generally zero

at the quantum dot for energetic reasons, otherwise we would have electron-hole pair

generation similarly like in a photo cell. In Fig. 6.9 the slope of the conduction edge

shows that the electrons of the QD’s can flow in from the gate electrode where the

sources of the electrons are located. If the gate electrode are loaded positive enough

and if the QD’s are below the Fermi potential, then the chemical potential of the QD

helps the voltage source from outside to pull off electrons from the boundary at the

Schottky contact. This can be interpreted as if inside the FET an internal voltage

source is acting which is driven by the chemical potential of the traps. This charge

separation is represented by Rack’s source terms.

Note that this modified interpretation does not change Rack’s numerical results.

So the processes in the Yusa-Sakaki FET can be explained at least formally by the

following capacitive electric replacement circuit element in fig. 6.10.

The FET is modeled by a capacitance consisting of three electrodes which are located

1) at the boundary of the gate electrode

2) at the boundary of the 2DEG and

3) at the internal layer of the quantum dots.

The outer electrodes are at the system border. There, the system is experimentally

accessible for measurements of voltage and current. The third inner electrode is elec-

trically charged internally. Here the charging process may not be observable directly.

It can be concluded indirectly by the non zero charge area of the hysteresis curve.

So the whole cyclic process is described a priori by an inconsistent mathematical

mixture of the classical potential formalism with an Fowler or a (oftenly thermically

assisted) quantum mechanical tunnel emission process closing the cycle.

This inconsistence is the cause of the apparent non-conservative energy balance.
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Figure 6.10: the electric circuits in the Yusa-Sakaki FET:(red arrows = electron fluxes)

Results - Parametric Oscillations with an Inverted Capacitance

The author here published under pseudonym in 2007 a simulation illustrating the idea

that an electronic element with an inverted hysteresis may be applied for a self excited

parametric oscillator [283] [284]. At this time not enough data were present to be able

to judge the relevance of this speculation. In the meantime the data situation is better.

Marent et al. [267] investigated an p-type quantum dot hole storage element which

can be regarded roughly as a p-typ-analog to the Yusa-Sakaki storage n-FET setup.

Its geometry is shown in fig. 6.11. Problems with the dynamics of the capacitance are

avoided by the fast p-n junction. The quantum dots are embedded here in a diode,

the dots itself are protected by a layer of pure GaAs on both sides, probably in order

to reduce the Coulomb shielding at the quantum hole dots.

A typical (calculated) field situation is shown also in fig. 6.11. If the AC-capacitance

is measured the setup shows an inverted hysteresis in the C-V-diagram, cf. fig. 6.12 .

The cycle area ∆Q =
∮
dQ/dU dU 6= 0 indicates that there exists an influx of charge

which suggests also an influx of energy. The so far missing integration constant of the

corresponding P−E diagram can be reconstructed from Marent’s other measurements.

The loss current of the storage diode is estimated to be few nA. The loading and erasing

time of the storage element are less than 0.1 microseconds,
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Figure 6.11: Structure of the capacitance TU5822; (from Marent [267])

Figure 6.12: Capacitance vs. voltage of TU5822 (from Marent [267])
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see [267]. The holes are loaded at voltages of typically −1V . They have to be erased

at voltages lower than −14V .

The inverted hysteresis is similar in some respect to an illuminated photocell. However,

it is not clear so far how the energy influx enters the system. Therefore, in order to

clarify the relevance of the influx the following questions have to be answered:

1) Is the inverted capacitance energy area large enough in order to overcome the

internal loss current in the diode in the time during the cycle ?

2) Are the charge and discharge processes fast enough in order to produce enough

energy in the time of a cyclic process in order to maintain a selfexcited parametric

gain oscillation driven by the inverted hysteresis as suggested in ref. [284].

Therefore I simulated the following circuit shown in fig. 6.13 . The circuit contains

the diode capacitance TU5822 modeled by splines. The element is regarded as the

combination of a current source plus a non-linear hysteretic capacitance as measured in

the C-V - diagram. If the oscillation amplitude goes from ≈ 0V to negative voltages (<

−14V ) the green branch of the hysteresis has to be used, cf. fig. 6.12. If the negative

peak (i.e. < −14V )is reached the erasing charge (i.e. the hysteresis area in fig.6.12) is

”injected numerically” in our circuit model and the transition from the green to the

red branch is done in the simulation. The advantage of this method is that we avoid a

complicated solution of the Poisson PDE at every point, the disadvantage is that the

solutions of model can be regarded to be valid only if the electric voltage oscillations at

the capacitance TU5822 have a negative peak amplitude of Uc of −16V < Uc < −20V

Applying the definitions from fig. 6.13 a loop analysis[285] of this circuit yields the

ODE system

Q̇ = −((Rcable +R)Q+Qz)/L

Q̇z = Q/C + UQD (6.9)

Q̇ = (UQD +RQ̇QD)/R

The equations are derived in detail in appendix 6.4.3.

The initial conditions are dQQD/dt(0) = 0, Q(0) = 8, 4998.10−6, UQD(0) = U0,

QQD(0) = −2, 6238.10−10, and Qz(0) = −(Rcable +R) ∗Q(0).
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Figure 6.13: the capacitance TU5822 as replacement circuit in the oscillator circuit

electrical data: C = 10−6 F, L = 0.235 H, Rcable = 2Ω, Rleak = 5.109Ω, Rload = 107 →
5.108Ω, R ≡ 1/(1/Rload + 1/Rleak)

The results of the simulation show that - under the present conditions - oscillations

may selfexcite near to the limiting breakdown voltage specification (= −20V ) of the

element at typically ≤ −16V with a frequency of about 125 kHz.

The gained power per cycle is a little bit higher than about ten times the internal

losses, cf. fig. 6.14.
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Figure 6.14: the oscillation signals of the above test circuit dependent from the load

a) + b) Relaxation: Rload = 10MΩ ; c) + d) Selfexcitation: Rload = 100MΩ
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Conclusions - Relevance and Outlook

Applying a recently published inverted capacitance FET model with available data

I tested the energy balance. I showed that the consequent application of the model

predicts that the energy from the inverted capacitance of the FET TU5822 can over-

come the internal dissipation of the leakage current during an electric cycle. This can

generate a parametric selfexcited oscillation on an offset DC-current, cf.[154]

The describing model itself is patched together by elements from different physical

theories, i.e. quantum theory and electrodynamics. It would be very astonishing if

one obtains a conventional consistent result in terms of energy under these conditions.

An experimental test at the present stage I regard to be difficult but possible if the

following list of engineering problems can be solved:

The load resistor of the circuit has a high impedance. The daily hum in the environ-

ment may be more intense than the signal which can be expected. Some hope may

be future systems with higher capacitances and fast charging and erasing times. The

conventional aims in the developments of new storage elements, (i.e. improvement of

memory window and fast write and erasure times) are identical with a research for

energy efficient capacitances. Therefore an additional energy measurement of these

components should be a only a small investment at low risk.

Another perspective of research may be the analogous transfer of these new ideas

here into electrochemistry, i.e. either to electrochemical systems or electrolytic capac-

itances. Only if an higher output can be achieved with any of these strategies it makes

sense to couple out the gain by switched transformers (instead of the resistive load) in

order to adapt to consumer loads.

It is still open whether the existence of the selfexcitation can be proved also for silicon

technology. The lifetime under the oscillatory stress of these electronic elements is also

a further critical question which can not be answered here finally. May be that the

selfexcited high voltage peaks are responsible for the breakdown of the electronic ele-

ments. This could be avoided if electronic switching elements discharge the DC-energy

in the circuit to a load before the breakdown voltage is reached.
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6.3 Permanent Magnet Motors

6.3.1 Historical Permanent Magnet Motors

The oldest claim of a perpetual running permanent magnetic motor is by Peter Pere-

grinus from 1296 [286]. In the 19th century the Gary motor was patented [287, 288].

Other claims are from Minato [289–291], Johnson [292–295], Searl [296–299], which is

partially confirmed by Godin and Roschin [300]. Today many claims can be found in

the internet. Seldomly it is convincing that the machine cycle is closed with gain.

The actually most serious claim seems to be the Yildiz permanent magnet motor,

[301, 302] which was shown at the university of Delft. In a Youtube video, selfacceler-

ation can be observed. However, the principle of its working remained unrevealed.

This problem exists generally: even if any motor really seems to work - but if no (rel-

atively simple) explanation and no engineering method exist - the development and

fabrication of motors is impossible because the knowledge cannot be transfered.

So I will present here a simple analysis of permanent magnet motor principles suited

for engineering applications. It is inspired by [303].

It is based on the magnetic analogy with the windwheel shown in section 2.2.2.

6.3.2 a Basic Mechanism of a Permanent Magnet Motor

Permanent running rotating motors are possible if the force or torque on the mov-

ing rotor cannot be derived from a conservative potential. So we need driving non-

conservative force fields which are beyond the standard classical mechanics cf.[17] .

They can be described neither by potentials neither by Lagrange or Hamitonian ener-

gies. So one has to enlarge the ansatz or go back to the application of more general

methods of mechanics i.e. either action-reactio or the principle of virtual work.

I suggested already in 1998 [304] that a ratchet potential coupled to a non-linear ma-

terial property also makes non-conservative permanent motion possible. This idea is

illustrated here by a simple mathematical model to be transfered to magnetic systems.

1.) I choose a coupling ”charge” q dependent from E(x) obeying the proportionality

q(E(x)) ∝ 2
√
|E(x)|

nor
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2) I move the ”charge” in an asymmetric shaped periodic rachet potential field V (x).

The generating field is then E(x) = −∂V/∂x. The periodic ratchet potential V (x)

may be modeled here by (with the cycle number (n = 1, 2, 3..) cf. fig. 6.15

V (x) =

{
1
2
(x− 3n) for 3n ≤ x < 3n+ 2

3− (x− 3n) for 3n+ 2 ≤ x < 3(n+ 1)

Then the field E(x) derived therefrom is

E(x) =

{
−1

2
for 3n ≤ x < 3n+ 2

+1 for 3n+ 2 ≤ x < 3(n+ 1)

3) The force F (x) of the field E(x) on the charge q(E) is F (x) = q(E).E(x).

(I set the proportional constant of q(E(x)) ∝ 2
√
|E(x)| to be 1 .)

In our numeric example the work W (x) after one cycle is calculated to

W =

∫ 3

0

q(x)E(x)dx =

∫ 2

0

−
√
| − 1/2|1

2
dx+

∫ 3

2

√
|1|(1)dx = −(

√
1/2− 1)

We see that W is non-zero indicating a periodic energy gain after the cycle if we choose

a loss-free magnet moving in the correct direction, cf. fig. 6.15

Figure 6.15: diagram a): generating potential V(x) with periodic boundary condition

diagram b): resulting work function W(x) with no periodic boundary condition

charged object
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6.3.3 the Simulation of a Permanent Magnet Motor

I transfer now the theoretical model mechanism from sec. 6.3.2 into a more real

simulation near to a engineering situation. I take

1) a nonlinear magnetic material ( i.e. a piece of Nickel(10mm × 10mm × height))

2) an asymmetric magnetic field (by two Neodym magnets (50mm × 8mm × height)).

The ”charges” are the induced magnetic ”North or South poles” at the moving Nickel

piece ( saturation 0,5 T). The generating field is the H-field between the Neodymium

permanent magnets (saturation 1,2 T) The force at each position of the piece of

Nickel is calculated at each step(step width 2.5 mm) by the Maxwell stress tensor.

The simulated situation is illustrated in fig. 6.16. We have a Nickel metal pulled by

an asymmetric magnetic field generated by two slightly tilted opposite strong planar

Neodymium magnets. In order to enhance the asymmetry of the setup two Permalloy

metal pieces (saturation 1,2 T) take off the magnetic field at one side of each magnet.

The results are calculated with an open source 2D-simulation program FEMM 4.2 .

They are shown in fig. 6.17 . We see that the gained work of the piece of Nickel is non-

negative after passing the channel between the two Neodymium magnets horizontally.

This means that this setup generates energy if the correct direction is chosen. From

fig. 6.17 we read off an gain efficiency factor η ≡gain/investment ≈ 0.7 per cycle.

These results should be transfered to rotary systems.

According to the basics of mechanical engineering two conditions are necessary for

mechanical stability of a rigid body: a balance of forces Fi and torques Ti [305]∑
i

Fi = 0
∑
i

Ti = 0 (6.10)

If any permanent magnet motor rotation runs it is driven by non-compensated mag-

netic torques. The driving torque is generated by the stator field B interacting with

the magnetic moments mi of the rotor magnets.∑
i

Ti =
∑
i

mi ×B 6= 0. (6.11)

So the sum of all rotor torques acts on the rotor axis because any force couple (repre-

senting a torque) can be shifted parallel in a rigid body [305, 306].
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Figure 6.16: the experimental setup and field of the test system

left insert: the experimental setup

right insert: the calculated fields at a moment of the movement from left to right

Figure 6.17: force F and work W vs. path x of the Nickel piece in the setup of fig.6.17

red line: force F vs. path x ; blue line: work W (x) =
∫ x

0 F (x′)dx′ vs. path x

this simulation is wrong

a better controled 3D simulation

yielded a null result !

this sort of simulation can yield

only null results in general

due to the Lagrange principle in

electrodynamics applied to uni-

quely described system
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To obtain motor rotation seems to be difficult experimentally:

Oftenly magnetic forces and losses block the rotation. Furthermore any arising central

forces are without effect because they do not contribute to a central torque [17].

So a systematic pre-simulation of the setup suggest a way to avoid these problems .

6.3.4 Discussion and Outlook

1) Conservative fields F (x) are characterized by the condition ∇× F = 0 normally.

A better alternative may be the integral version W (∆x) =
∫ ∆x

0
F (x′)dx′ = 0. This

means that W (x) =
∫ x

0
F (x′)dx′ has a periodic boundary condition for the conservative

systems moving along the cyclic path length ∆x.

Note that the integral version holds also for one-dimensional systems, cf. fig. 6.15.

2) Note that the Nickel piece moves in a labile equilibrium with respect to the y-

coordinate. The system is stabilized here by the realized constraint y = constant.

3) Note that the Poynting relation is without relevance here because it describes the

work of the current. The Maxwell stress tensor determines here the mechanical forces

and the mechanical work. This term is analogous to a pressure tensor.

4) If thermical effects are included the mechanical energy of these systems can be

discussed only by non-equilibrium thermodynamics with non-conservative force fields.

This approach is non-standard. The known thermodynamic approach applies only

potential energies and describes the more simple situations.

5) Our results may be enhanced if we exchange

a) the Neodymium magnet by an electromagnet with iron cobalt core driven into

saturation (≈ 2T) b) if we replace the Nickel by a iron saturation at ≈ 1,5T

6) If the Nickel is exchanged by a permanent magnets as rotor magnets (instead of

the passive Nickel piece) the non-linear part of the demagnetisation characteristics

[307] determines the success. Note that long ago Searl applied special magnets with a

nonlinear magnetic demagnetization similar to Alnico [296] .

7) All simulations still have to be controlled by high resolving professional programs.

8) It is clear that the simulation programs can be used for the optimation of design.

9) Our considerations might be transfered to ferroelectric materials in electric fields.

done
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6.4 Appendix

6.4.1 the Derivative of the Electromagnetic Flux

In this section a mathematical vector relation is derived which helps to obtain Fara-

day’s law and Ampere’s law, cf. the equations 6.3 and 6.4.

I cite from the lecture script of H. Risken [207] , see also [172, 308].

The derivation starts in defining the space-time dependent vector field Γ(x, t).

” A point x(t) of the curve C(t) moves to the point x + v ∗ ∆t on C(t + ∆t). The

velocity can vary.” The flux of the vector field Γ(x, t) through the area F (t) at the

time t is, cf. fig. 6.18

Ξ(t) =

∫
F (t))

Γ(x, t) df (6.12)

The flux of Γ(x, t+ ∆t) through the area F (t+ ∆t) at the time t+ ∆t is

Ξ(t+∆t) =

∫
F (t+∆t)

Γ(x, t+∆t) df ≈
∫
F (t+∆t)

Γ(x, t) df+

∫
F (t+∆t)

∂Γ(x, t)

∂t
df∆t (6.13)

From the last two equations follows

Ξ(t+ ∆t)−Ξ(t) ≈
∫
F (t+∆t)

Γ(x, t) df −
∫
F (t)

Γ(x, t) df +

∫
F (t+∆t)

∂Γ(x, t)

∂t
df∆t (6.14)

If the Gauss’s integral theorem is applied to volume restricted by F (t), F (t+ ∆t) and

the connecting hull surface between C(t) and C(t+ ∆t) , cf. fig. 6.18 one obtains∫
V

∇Γ(x, t)dV =

∫
F (t+∆t)

Γ(x, t)df −
∫
F (t)

Γ(x, t)df +

∫
hull

Γ(x, t)df (6.15)

If we insert eq. 6.15 in eq. 6.14 we obtain

∆Ξ ≡ Ξ(t)−Ξ(t+∆t) =

∫
V

∇Γ(x, t)dV −
∫
hull

Γ(x, t)df+

∫
F (t+∆t)

∂Γ(x, t)

∂t
df∆t (6.16)

On the hull surface holds, cf. fig. 6.19 left drawing

df = ds × v ∆t (6.17)
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For a volume element holds, cf. fig. 6.19 right drawing

dV = df ∗ v ∆t (6.18)

Therefrom one reformulates the surface integral∫
hull

Γ(x, t)df =

∮
C

Γ(x, t)(ds× v) ∗∆t =

∮
C

(v × Γ(x, t))ds ∗∆t (6.19)

and the volume integral ∫
V

∇Γ(x, t)dV =

∫
S

Γ(x, t)(v ∗ df)∆t (6.20)

In sum one obtains

dΞ

dt
= lim

∆t→0

∆Ξ

∆t
=

∫
F (t)

(
∂Γ

∂t
+ (∇ ∗ Γ)v)df −

∮
C(t)

(v × Γ)ds (6.21)
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Figure 6.18: the geometry of the problem (from script[207] of H. Risken), cf. text

Figure 6.19: the coordinate transformations of the differentials (from [207]), cf. text
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6.4.2 Moment and Energy Conservation of Charges

the Poynting relation

I start to write down the equations of the force F on a electric and a magnetic charge

FE = qE(E + v
c
×B)

FH = qH(H− v
c
×D) (6.22)

In the popular derivation the mechanical work W on the charges each are written (the

second terms of eq.6.22 are assumed to be perpendicular and are neglected)

WE =
∫

FEds =
∫

FE.vdt

WH =
∫

FHds =
∫

FH .vdt (6.23)

Now, I add both contributions and write down the total power involved P in field

terminology

P ≡ ∂W

∂t
=

∫
(ρEv.E + ρHv.H) d3x (6.24)

I write down the power density p of the electric and magnetic current

pE ≡ jE.E ≡ ρEv.E = c
4π

(+(∇×H)− 1
c
∂D
∂t

)E

pH ≡ jH .H ≡ ρHv.H = c
4π

(−(∇× E)− 1
c
∂B
∂t

)H (6.25)

Inserting eq.6.25 in eq.6.24 and applying the mathematical vector relation ∇.(a×b) =

b.(∇× a)− a.(∇× b) I obtain finally

∂W

∂t
=

∫
(ρEv.E+ρHv.H) d3x = −

∫
[
c

4π
∇.(E×H)+

1

4π
(H

∂B

∂t
+E

∂D

∂t
)] d3x (6.26)

Note that this extended Poynting energy conservation relation can describe also the

energy exchange of permanent magnet currents (modeled by moving magnetic charge

dipoles) in the field. This is not included in the conventional theory which describes

the energy exchange exclusively with electric currents.

It must be mentioned that the Poynting energy conservation is incomplete and does

not take into account for all possible energetic balance situations. Regarding

P ≡ ∂W

∂t
=
∂

∂t

∫
Fds =

∫
∂F

∂t
ds +

∫
Fdv (6.27)
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the first term is not included in the historical derivation of the Poynting energy con-

servation, but it is relevant for the calculation of the betatron or of Nikulov’s systems

discussed in section 4.5.3. Other approaches are discussed in sec. 6.3.4.

the Maxwell stress tensor

I start writing down the total force F of one species of electric and magnetic volume

charge under the same quasi-stationary conditions as discussed at the end of sec. 6.26

F = FE + FH = qE(E +
v

c
×B) + qH(H− v

c
×D) (6.28)

The charges q = ρ d3x and the currents j (consisting of j = ρ.v ) are eliminated by

inserting the Maxwell equations 6.4 in 6.28. Integrating the object volume I obtain

F =
1

4π

∫
(∇D.E +∇B.H) d3x

+
1

4π

∫
[(∇×H)×B + (∇× E)×D] d3x (6.29)

+
1

4π

∫
(−1

c
∂D/∂t×B + 1

c
∂B/∂t×D) d3x

After applying the mathematical vector relation a × b = −(b × a) to the last term

in last integral of eq. 6.29 the derivation can be completed by copying from standard

textbooks. In tensor terminology the end result is (cf. [308] [207])

Fi = +
1

4π

∫
(Ei.∂Dj/∂xj +Hi.∂Bj/∂xj) d

3x

+
1

4π

∫
∂
∂xj

(EiDj)− ∂Ek

∂xi
Dk

+
1

4π

∫
∂
∂xj

(HiBj)− ∂Hk

∂xi
Bk d

3x (6.30)

− 1

4πc

∫
∂
∂t
εijk(Dk.Bj) d

3x

(The Einstein convention and no simplification to linear materials are applied).
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Figure 6.20: The Q-V diagram of the capacitance TU5822 integrated

6.4.3 the Derivation of the ODE of the Parametric Oscillation

The circuit to be calculated is motivated in section 6.2.4 and is shown in fig. 6.13 .

First we explain the choice of the values of the electronic components. This allows

us to estimate the behavior of the circuit. Then we derive the differential equation

system describing more exacly the behaviour of the circuit.

We know that the capacitance TU5822 has a maximal erasing time of 0.1 µsec at

−14 V , the writing time is still shorter (typical 6nsec at 0.5 V ) [267]. This means: if

we want to build in an inverted capacitance into an oscillation circuit, the cycle time

should to be larger because the charging and discharging of the QD’s is proceeded

only in the peaks of the oscillation . We take arbitrarily a factor of 1/ [(oscillation

frequency) × (charging time ] /≈ 100 and choose f=85 kHz as working frequency.

Because the mean capacity of the element is about 15 pF an inductance of 0.235H

follows from f = 1/(2π
√
L.C).

In order to estimate the offset current flowing out during one cycle we integrate nu-

merically fig.6.12 by a tabel calculation program. If the up and the down curve of

fig.6.12 are integrated we obtain fig. 6.20. From my numerical data of this diagram

I read off a difference charge ∆Q = 5.55894−13 C per cycle between both curves at

voltages < −12V (hardly visible in fig. 6.20) This value represents the area between

the up an down curve in fig. 6.12. This means: we expect a mean offset current
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Figure 6.21: the decomposition of the network according to the loop analysis

I ≈ f.∆Q. This allows us to estimate a mean load resistance which is necessary in

order to maintain the capacitance’s mean voltage with the oscillation swinging around.

If this load resistance is lower than the inner parasitic resistor of the capacitance itself,

a selfexciting-oscillation should be possible. I estimate the bifurcating transition be-

tween selfexcitation and relaxation at an total inner resistance to be about ≈ 10 MΩ.

In order to obtain the ODE system we use a loop analysis of the circuit [285] shown

in fig. 6.13. For our calculation we decompose the network according to fig. 6.21.

The complement leads us to select out the following independent mesh equations of

the voltages of the two branches of the complement

L( ˙IR + İQD) + (Rcable +R)(IR + IQD) + 1
C

(QR +QQD) + UQD = 0

L( ˙IR + İQD) + (Rcable +R)(IR + IQD) + 1
C

(QR +QQD) +RIR = 0 (6.31)

with QR ≡
∫
IR dt and QQD ≡

∫
IQD dt .

UQD(QQD) is numerically defined as the inverted function of QQD(UQD), cf. fig.6.20 .

It is integrated from the connecting splines of the pivot points obtained from fig.6.12 .

In order to be able to compare with the experiment we introduce new variables and

define I ≡ IR + IQD and Q ≡ QR +QQD.
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Applying this definition we rewrite eq. 6.31 in terms of IQD and I or QQD and Q

Lİ + (Rcable +R)I +Q/C + UQD = 0

UQD +RIQD = RI (6.32)

The next task is to make the equations handsome for programming.

Therefore we introduce the variable Qz in order to decompose the first equation into

two ODE’s of first order this equation system. So we obtain

LQ̇ = −(Rcable +R)Q−Qz

Q̇z = Q/C + UQD (6.33)

RQ̇ = UQD +RQ̇QD

These equations are programmed. The initial conditions are

Q(0) = 8.4998.10−6, dQQD/dt(0) = 0, UQD(0) = U0, QQD(0) = −2.6238 ∗ 10−10, and

Qz(0) = −(Rcable +R) ∗Q(0).
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6.4.4 List of Electromagnetic Symbols

bold symbols are vectors, normal symbols are normed scalars

indices normally have the same meaning like symbols

name symbol

area A or A

magnetic induction B or B

electric field E or E

electric displacement D or D

magnetic field H or H

current I

current density j ≡ ρv or j

hole density p (in electrical context)

electron density n

polarization P (in electrical context)

charge Q

resistance R

voltage U

capacity C

inductivity L

path s or x

time t

power p (in mechanical context)

velocity v or v

volume V or dx3

velocity of light c

magnetic flux φ

charge density ρ

electric area charge θ ≡
∮

DdA





Chapter 7

Summary

If one thinks about what may be possible physically in the classical world two sorts of

systems are offered by mathematics:

1) conservative ones to be found in mechanics and in thermodynamics obeying the

classical laws of conservative energy conservation

2) non-conservative ones, which either depend from an additional parameter like time

either are vortex systems distributed in space.

These systems are less popular in physics but they are more interesting for energy

science because they are non-conservative with respect of energy. Under this aspect I

discussed ”overunity” systems in this book:

First I explained what energy conservation means regarded from the different common

philosophic points of view. Then I refered to the classical second law violation claims of

the isotherm stratification. I derived the (old) theory of this problems conventionally

and completely by optimizing the internal energy of the thermodynamic system. I did

not find ”overunity” efficiencies contrary to some experimental second law violation

claims discussed. Other systems which are outside of equilibrium thermodynamics are

considered also in order to see the limits of standard thermodynamics. Temperature is

proposed to be the fit parameter to any statistical distribution which can differ from

the Gibbsian. This transcends the old empirical temperature concept.

I simulated also the historic Irinyi-Doczekal claim of a steam engine which applies a

143
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water-benzene mixture as fluid. This system can be understood as a limit case of

equilibrium thermodynamics. It has a high efficieny at low temperature but has no

over- Carnot efficiency. I improved the labile continuum theory of spontaneous con-

densation applying an (ideal) mixture model in order to check the overunity claim by

Doczekal. The theory does not need any extrapolation ansatzes because the set of

non-linear equations is complete. The calculated results seem to be correct in the or-

der of magnitude but they deviate strongly from the measurements of Doczekal. They

give insight how thermostatics is embedded theoretically in non-equilibrium thermo-

dynamics. The Second Law becomes obsolete with a non-equilibrium model because

its purpose is taken over by the dynamics of the system.

Furthermore I seeked for regimes ”beyond” the Second Law. So I found as candidates

for further investigation inverted hysteresis in magnet multilayer systems and in stor-

age FETs. Following the measurements of the experimentalists I showed that the last

systems can generate energy by cycling the inverted hysteresis. The energy gained

of a discussed cycle is shown to be until 10 times the loss energy of the generating

electronic part (a storage FET). These systems contain quantum mechanic elements

in their cycle. This explains the inconsistence of the balance of energy.

Futhermore permanent magnet perpetuum mobiles are explained: they are shown to

be analoga to wind wheels. They may be driven by a non conservative force field which

is generated by a non-linear coupling of the rotor element to an asymetric ratchet-like

magnetic field, which even may be conservative. Permanent running magnet motors

are beyond equilibrium thermodynamics and beyond the Second Law. However, they

are no contradiction to classical electrodynamics. First simulations indicate that they

can be simulated by conventional standard finite element programs.

Dieter
Linie
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Mannheim, Leipzig, Zürich: B.I. Wissenschaftsverlag, 1993.

[13] K. Huang, Statistical Mechanics. New York: Wiley, 1963.

[14] R. Mayer, Die organische Bewegung in ihrem Zusammenhange mit dem Stoff-

wechsel - Ein Beitrag zur Naturkunde.

Heilbronn: C. Drechsler’sche Buchhandlung, 1845.
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[149] M. Smoluchowski, “Über die Brown’sche Molekularbewegung unter Einwirkung
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[202] F. Ehrenhaft, “Über die Photophorese, die wahre magnetische Ladung und die
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